首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The (1 0 3)-oriented aluminum nitride (AlN) thin film is an attractive piezoelectric material for the applications in surface acoustic wave and film bulk acoustic wave resonator devices. In this work, we repot structural and mechanical characteristics of (1 0 3) AlN thin films deposited onto (1 0 0) Si substrates with radio frequency magnetron sputtering at different sputtering powers at 150, 250, and 350 W. Comparisons were made on their crystalline structures with X-ray diffraction, surface morphologies with atomic force microscopy, mechanical properties with nanoindentation, and tribological responses with nanoscratch. Results indicate that for the sputtering power of 350 W, a high-quality (1 0 3) AlN thin film, whose hardness is 18.91 ± 1.03 GPa and Young's modulus is 242.26 ± 8.92 GPa, was obtained with the most compact surface condition.  相似文献   

2.
ZnO thin films grown on Si(1 1 1) substrates by using atomic layer deposition (ALD) were annealed at the temperatures ranging from 300 to 500 °C. The X-ray diffraction (XRD) results show that the annealed ZnO thin films are highly (0 0 2)-oriented, indicating a well ordered microstructure. The film surface examined by the atomic force microscopy (AFM), however, indicated that the roughness increases with increasing annealing temperature. The photoluminescence (PL) spectrum showed that the intensity of UV emission was strongest for films annealed at 500 °C. The mechanical properties of the resultant ZnO thin films investigated by nanoindentation reveal that the hardness decreases from 9.2 GPa to 7.2 GPa for films annealed at 300 °C and 500 °C, respectively. On the other hand, the Young's modulus for the former is 168.6 GPa as compared to a value of 139.5 GPa for the latter. Moreover, the relationship between the hardness and film grain size appear to follow closely with the Hall-Petch equation.  相似文献   

3.
In the present work, the nanoindentation of aluminum thin film on silicon substrate is investigated by three-dimensional molecular dynamic (MD) simulation. The film/substrate system is modeled by taking Lennard-Jones (LJ) potential to describe the interaction at the film-substrate interface. Different loading rate from 50 to 250 m/s is carried out in the simulation. The results showed that the hardness of the film increased with the loading rate. In order to study the effect of substrate on the mechanical properties of thin film, nanoindentation process on monolithic Al material is also simulated. The simulation results revealed that indentation pile-up in the aluminum film is significantly enhanced by the substrate. The substrate also affects the loading force during the nanoindentation. At the beginning of the indentation, the loading force is not affected by the substrate. Then, it is getting smaller caused by the interface. As the film is penetrated, the loading force increased rapidly caused by the hard substrate. These results were coincident with the previous reported experiments.  相似文献   

4.
The deformation mechanisms of GaN thin films obtained by metal-organic chemical vapor deposition (MOCVD) method were studied using nanoindentation with a Berkovich diamond indenter, micro-Raman spectroscopy and the cross-sectional transmission electron microscopy (XTEM) techniques. Due to the sharpness of the tip of Berkovich indenter, the nanoindentation-induced deformation behaviors can be investigated at relatively lower load and, hence, may cover wider range of deformation-related phenomena over the same loading range. The load-displacement curves show the multiple “pop-ins” during nanoindentation loading. No evidence of nanoindentation-induced phase transformation and cracking patterns were found up to the maximum load of 300 mN, as revealed from the micro-Raman spectra and the scanning electron microscopy (SEM) observations within the mechanically deformed regions. In addition, XTEM observation performed near the cross-section of the indented area revealed that the primary deformation mechanism in GaN thin film is via propagation of dislocations on both basal and pyramidal planes. The continuous stiffness measurement (CSM) technique was used to determine the hardness and Young's modulus of GaN thin films. In addition, analysis of the load-displacement data reveals that the values of hardness and Young's modulus of GaN thin films are 19 ± 1 and 286 ± 25 GPa, respectively.  相似文献   

5.
Silicon nitride films have been deposited at a low temperature (70 °C) by inductively coupled plasma chemical vapor deposition (ICP-CVD) technique and their physical and chemical properties were studied. For a deposited SiN sample, β-phase was observed and refractive index of 2.1 at 13.18 nm/min deposition rate was obtained. The attained stress of 0.08 GPa is lower as compared to the reported value of 1.1 GPa for SiN thin films. To study the deposited film, characterization was performed using X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), micro Raman spectroscopy, Fourier transfer infrared spectroscopy (FTIR), cross-section scanning electron microscopy (SEM) and atomic force microscopy (AFM).  相似文献   

6.
High quality fluorine-doped tin oxide (SnO2:F) films on glass substrates were been prepared using chemical vapor deposition (CVD) method. The electrical properties, surface morphologies, structural properties and optical properties of the films were studied by varying the freon flow rates. The structure was analyzed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the morphology. Energy-dispersive spectroscopy (EDS) was conducted to understand the surface fluorine composition of the film. The results showed that crystalline structure of the film had a have cassiterite-like diffraction patterns with a preferred orientation of (1 1 0). Surface roughness was evaluated by atomic force microscopy, characterized by root mean square (RMS) and average value (Ra). The SnO2:F resistivity decreased as the freon flow rate increased. The films had a uniform thickness and a transmittance of 80–90% within the visible region of the spectrum.  相似文献   

7.
This study reports the influence of growth conditions on the characteristics of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering at various N2-to-total (N2 + Ar) flow ratio, which is RN. The crystal structures, microstructure, and mechanical properties for different RN were characterized by electron spectroscopy for chemical analysis, X-ray diffraction, atomic force microscopy, field-emission-scanning electron microscopy, transmission electron microscopy, and nanoindentation. The results indicate that the TiVCrZrY alloy and nitride coatings have hexagonal close-packed (hcp)-type and sodium chloride (NaCl)-type solid-solution structures, respectively. The voids in the coatings are eliminated and the growth of the columnar crystal structures is inhibited along with an increasing RN. As a consequence, highly packed equiaxed amorphous structures with smooth surfaces are formed. The coatings accordingly achieved a pronounce hardness of 17.5 GPa when RN = 100%.  相似文献   

8.
TiCN/TiNbCN multilayer coatings with enhanced mechanical properties   总被引:1,自引:0,他引:1  
Enhancement of mechanical properties by using a TiCN/TiNbCN multilayered system with different bilayer periods (Λ) and bilayer numbers (n) via magnetron sputtering technique was studied in this work. The coatings were characterized in terms of structural, chemical, morphological and mechanical properties by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nanoindentation. Results of the X-ray analysis showed reflections associated to FCC (1 1 1) crystal structure for TiCN/TiNbCN films. AFM analysis revealed a reduction of grain size and roughness when the bilayer number is increased and the bilayer period is decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period (Λ) was 15 nm (n = 200), yielding the highest hardness (42 GPa) and elastic modulus (408 GPa). The values for the hardness and elastic modulus are 1.6 and 1.3 times greater than the coating with n = 1, respectively. The enhancement effects in multilayer coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain the increase in hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayers taking into account the thickness reduction at individual single layers that make the multilayered system. The Hall-Petch model based on dislocation motion within layers and across layer interfaces, has been successfully applied to multilayers to explain this hardness enhancement.  相似文献   

9.
In this work, the effect of modulation period (Λ) on Ti/TiN multilayer films deposited on high-speed-steel (HSS) substrates using pulse biased arc ion plating is reported. The crystallography structures and cross-sectional morphology of Ti/TiN multilayer films were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM), respectively. Their mechanical properties were determined via nanoindentation measurements, while the film/substrate adhesion via the scratch test. It was found that the highest hardness value reached 43 GPa for the modulation period of 54 nm, while the film/substrate adhesion also reached the highest value of 83 N. Furthermore, the hardness enhancement mechanism in the multilayer films is discussed.  相似文献   

10.
A binary metallic glass (MG) Cu49.3Zr50.7 in the form of thin film was successfully grown on a Si (1 0 0) substrate by magnetron sputtering. The mechanical properties, specifically, hardness and modulus at various peak loads and loading rates were characterized through instrumented nanoindentation. Unlike other metallic glasses showing an indentation size effect (ISE), the composition of this study does not have an ISE, which is phenomenologically the result of the negligible length scale according to the strain gradient plasticity model. The proportional specimen resistance model is applicable to the load-displacement behaviors and suggests that the frictional effect is too small to contribute to the ISE. The occurrence of plasticity depends on loading rates and can be delayed so that the displacement during the load holding segment increases logarithmically. In addition, the hardness and modulus are both dependent on the loading rates as well, i.e., they increase as the loading rate increases up to 0.1 mN/s and then hold constant, which is independent of creep time (≤100 s). These loading-rate-dependent behaviors are interpreted as the result of viscoelastic effect rather than free volume kinetics.  相似文献   

11.
(Cr, Al)N films were deposited by pulsed bias arc ion plating on HSS and 316L stainless steel substrates. With pulsed substrate bias ranging from −100 V to −500 V, the effect of pulsed bias on film composition, phase structure, deposition rate and mechanical properties was investigated by EDX, XRD, SEM, nanoindentation and scratch measurements. The high-temperature (up to 900 °C) oxidation resistance of the films was also evaluated. The results show that Al contents and deposition rates decrease with increasing pulsed bias and the ratio of (Cr + Al)/N is almost constant at 0.95. The as-deposited (Cr, Al)N films crystallize in the pseudo-binary (Cr, Al)N and Al phases. The film hardness increases with increasing bias and reaches the maximum 21.5 GPa at −500 V. The films deposited at −500 V exhibit a high adhesion force, about 70 N, and more interestingly good oxidation resistance when annealed in air at 900 °C for 10 h.  相似文献   

12.
InxGa1−xN thin films with In concentration ranging from 25 to 34 at.% were deposited on sapphire substrate by metal-organic chemical vapor deposition (MOCVD). Crystalline structure and surface morphology of the deposited films were studied by using X-ray diffraction (XRD) and atomic force microscopy (AFM). Hardness, Young's modulus and creep resistance were measured using a nanoindenter. Among the deposited films, In0.25Ga0.75N film exhibits a larger grain size and a higher surface roughness. Results indicate that hardness decreases slightly with increasing In concentration in the InxGa1−xN films ranged from 16.6 ± 1.1 to 16.1 ± 0.7 GPa and, Young's modulus for the In0.25Ga0.75N, In0.3Ga0.7N and In0.34Ga0.66N films are 375.8 ± 23.1, 322.4 ± 13.5 and 373.9 ± 28.6 GPa, respectively. In addition, the time-dependent nanoindentation creep experiments are presented in this article.  相似文献   

13.
Raman spectra, atomic force microscope (AFM) images, hardness (H) and Young's modulus (E) measurements were carried out in order to characterize carbon thin films obtained from a C60 ion beam on silicon substrates at different deposition energies (from 100 up to 500 eV). The mechanical properties were studied via the nanoindentation technique. It has been observed by Raman spectroscopy and AFM that the microstructure presents significant changes for films deposited at energies close to 300 eV. However, these remarkable changes have not been noticeable on the mechanical properties: apparently H and E increase with higher deposition energy up to ∼11 and ∼116 GPa, respectively. These values are underestimated if the influence of the film roughness is not taken into account.  相似文献   

14.
By means of the reactive magnetron sputtering method, a series of Nb-Si-N composite films with different Si contents were deposited in an Ar, N2 and SiH4 mixture atmosphere. These films’ chemical composition, phase formation, microstructure and mechanical properties were characterized by the energy dispersive spectroscopy, X-ray diffraction, transmission electron microcopy, atomic force microscopy and nanoindentation. The experimental results showed that the silicon content in the Nb-Si-N composite films can be conveniently controlled by adjusting the SiH4 partial pressure in mixed gas. The hardness and elastic modulus of the Nb-Si-N films were remarkably increased with a small amount of silicon addition and reached their maximum values of 53 and 521 GPa, respectively, at 3.4 at.% Si. Such an obvious enhancement of mechanical properties is related to the increment of crystal defects in the Nb-Si-N films. With silicon content increasing in the films further, the mechanical properties decreased gradually to somewhat a bit lower than those of the NbN film.  相似文献   

15.
Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to −200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at −100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.  相似文献   

16.
The BCN thin films were produced by dual ion beam sputtering deposition (DIBSD). The influence of assisted ion energy on surface roughness and mechanical properties of BCN films were investigated. The surface roughness was determined by atomic force microscopy (AFM) and the mechanical properties of BCN firms were evaluated by nano-indentation in N2 gas. The composition, structure and chemical bonding of the BCN thin films were analyzed by using energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), laser Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). These films appeared as amorphous structure. As a result, the BCN films with the smoothest surface (Ra = 0.35 nm and Rp-v = 4.4 nm) and the highest nano-hardness of 30.1 GPa and elastic modulus of 232.6 GPa were obtained at 200 eV and 12 mA with N2:Ar = 1:1, and the chemical composition of this BCN film was 81 at.% B, 14 at.% C and 5 at.% N. Moreover, several bonding states such as B-N, B-C and C-N were observed in BCN thin films.  相似文献   

17.
Boron phosphide films were grown on silicon substrate by radio frequency reactive magnetron sputtering using boron target and hydrogen phosphine at different gas flow ratios (PH3/Ar) at lower temperature. The chemical composition, microstructure and mechanical properties were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectrum, FTIR spectrum, surface profilometer and nano-indenter. The results indicate that the atomic ratio (P/B) rises from 1.06 up to 1.52 with the gas flow ratio increasing from 3/50 to 15/50. Simultaneously, the hardness and Young's modulus decrease from 25.4 GPa to 22.5 GPa, and 250.4 GPa to 238.4 GPa, respectively. Microstructure transforms from microcrystalline state to amorphous state along with the gas flow ratio increasing. Furthermore higher gas flow ratio leads to lower stress. The BP film prepared at the gas flow ratio of 3/50 can be contributed with the best properties.  相似文献   

18.
Ti-B-C-N nanocomposite coatings with different C contents were deposited on Si (1 0 0) and high speed steel (W18Cr4V) substrates by closed-field unbalanced reactive magnetron sputtering in the mixture of argon, nitrogen and acetylene gases. These films were subsequently characterized ex situ in terms of their microstructures by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM), their nanohardness/elastic modulus and facture toughness by nano-indention and Vickers indentation methods, and their surface morphology using atomic force microscopy (AFM). The results indicated that, in the studied composition range, the deposited Ti-B-C-N coatings exhibit nanocomposite based on TiN nanocrystallites. When the C2H2 flow rate is small, incorporation of small amount of C promoted crystallization of Ti-B-C-N nanocomposite coatings, which resulted in increase of nano-grain size and mechanical properties of coatings. A maximum grain size of about 8 nm was found at a C2H2 flux rate of 1 sccm. However, the hardness, elastic modulus and fracture toughness values were not consistent with the grain size. They got to their maximum of 35.7 GPa, 363.1 GPa and 2.46 MPa m1/2, respectively, at a C2H2 flow rate of 2 sccm (corresponding to about 6 nm in nano-grain size). Further increase of C content dramatically decreased not only grain size but also the mechanical properties of coatings. The presently deposited Ti-B-C-N coatings had a smooth surface. The roughness value was consistent with that of grain size.  相似文献   

19.
The growth of metastable silicon germanium (Si0.8Ge0.2) thin film on Si(1 0 0) by ultrahigh-vacuum chemical vapor deposition has been subjected to residual indentation studies. A nanoindentation system has been applied to analyze SiGe film after different annealing treatments. A number of phenomena have been found for the heteroepitaxial growth of SiGe film at the critical thickness of 350 nm, including single discontinuity (the so-called “pop-in” event) as well as the elastic/plastic contact translation. Atomic force microscopy is employed to investigate the surface impression. Pop-in events in the load-indentation depth curves of 400 and 500 °C and no nano-cracks in the vicinity regions are found. The values of H ranging from 13.13±0.9, 21.66±1.3, 18.52±1.1, 14.47±0.7 GPa and the values of E ranging from 221.8±5.3, 230.7±6.4, 223.5±4.6, 156.7±3.8 GPa, are obtained. The elastic/plastic contact translation of the SiGe film occurs at different annealing conditions, with hf/hmax values in the range of 0.501, 0.392, 0.424, and 0.535 for samples are treated at RT, 400, 500, and 600 °C, respectively. The mechanism responsible for the pop-in event in such crystal structure is due to the interaction of the indenter tip with the pre-existing threading dislocations, since the release of the indentation load is bound to be reflected in the directly compressed volume.  相似文献   

20.
High-quality thick GaN films without cracks were achieved by using a new nozzle structure in the reactor grown by the hydride vapor phase epitaxy on sapphire substrates. Optical contrast microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray double diffraction (XRD) and cathodoluminescence (CL) were carried out to reveal the surface, crystal and optical properties of the GaN epilayer. It was found that the nozzle structure in the reactor has a large effect on the growth rate, surface flat, crystal quality, and the uniformity of the growth. Compared with the old one, the new nozzle structure (denoted as multi-layers nozzle) can improve dramatically the properties of thick GaN. Mirror, colorless and flat GaN thick film was obtained and its (0 0 0 2) FWHM results were reduced from 1000 to 300 arcsec when the new nozzle was used. AFM result revealed a step flow growth mode for GaN layer with the new nozzle. Room-temperature CL spectra on the GaN films showed a strong near-band-edge peak for the new nozzle, but there is only weak emitting peak for the old nozzle. New nozzle structure can improve the uniform of flow field near the surface of substrates compared with the old one, which leads to the improvement of properties of GaN thick film by hydride vapor phase epitaxy (HVPE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号