首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Ti-Cu-N hard nanocomposite films prepared by pulse biased arc ion plating   总被引:3,自引:0,他引:3  
In this work, Ti-Cu-N hard nanocomposite films were deposited on high-speed-steel (HSS) substrates using a TiCu (88:12 at.%) single multi-component target by pulse biased arc ion plating. The influence of pulse bias voltages was examined with regard to elemental composition, structure, morphology and mechanical properties of the films. The Cu atomic content of Ti-Cu-N films was determined by Electron Probe Micro-Analyzer (EPMA). The structure and morphology were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Hardness and film/substrate adhesion were determined by nanoindenter and scratch test, respectively. The results showed that the content of Cu appeared to be in the range of 1.75-4.5 at.%, depending on pulse bias voltages. The films exhibit a preferred orientation TiN (1 1 1) texture when the substrate bias voltages were −100 V and −300 V, while the preferred orientation change to be a preferred orientation TiN (2 2 0) one when the substrate bias voltages increase to −600 V and −900 V. And no obvious sign of metal copper phase was observed. The SEM morphologies showed some macroparticles (MPs) on the surface of the films and the relative content of the MPs decreased significantly when the substrate bias voltages increased from −100 to −900 V. The maximum value (74 N) of the film/substrate adhesion of the films was obtained when the substrate bias voltage was −600 V with Cu content of 1.75 at.%. Hardness enhancement was observed, the value of the hardness increased firstly and reached a maximum value of 31.5 GPa, corresponding to Cu content of 1.75 at.%, and then it decreased when the substrate bias voltage changed from −100 to −900 V. The hardness enhancement was discussed related to the concept for the design of hard materials.  相似文献   

2.
TiN/TiAlN multilayer coatings were deposited on M2 high speed steel by a pulsed bias arc ion plating system. The effect of pulsed bias duty ratio on the microstructure, mechanical and wear properties was investigated. The amount of macroparticles reduced with the increase of the duty ratio. The surface roughness was 0.0858 μm at duty ratio of 50%. TiN/TiAlN multilayer coatings were crystallized with orientations in the (1 1 1), (2 0 0) (2 2 2) and (3 1 1) crystallographic planes and the microstructure strengthened at (1 1 1) preferred orientation. At duty ratio of 20%, the hardness of TiN/TiAlN multilayer coatings reached a maximum of 3004 HV, which was 3.2 times that of the substrate. The adhesion strength reached a maximum of 77 N at 50% duty ratio. Friction and wear analyses were carried out by pin-on-disc tester at room temperature. Compared with the substrate, all the specimens coated with TiN/TiAlN multilayer coatings exhibited better tribological properties.  相似文献   

3.
The polycrystalline Ti/TiNx multilayer films were deposited by magnetron sputtering, and the as-deposited multilayer coatings were annealed at 500-800 °C for 2-4 h in vacuum. We investigated the effects of annealing temperature and annealing time on the microstructural, interfacial, and mechanical properties of the polycrystalline Ti/TiNx multilayer films. It was found that the hardness increased with annealing temperature. This hardness enhancement was probably caused by the preferred crystalline orientation TiN(1 1 1). The X-ray reflectivity measurements showed that the layer structure of the coatings could be maintained after annealing at 500 °C and the addition of the Si3N4 interlayer to Ti/TiNx multilayer could improve the thermal stability to 800 °C.  相似文献   

4.
E.W. Niu 《Applied Surface Science》2008,254(13):3909-3914
Ti-Zr-N (multi-phase) films were prepared by cathodic vacuum arc technique with different substrate bias (0 to −500 V), using Ti and Zr plasma flows in residual N2 atmosphere. It was found that the microstructure and mechanical properties of the composite films are strongly dependent on the deposition parameters. All the films studied in this paper are composed of ZrN, TiN, and TiZrN ternary phases. The grains change from equiaxial to columnar and exhibit preferred orientation as a function of substrate bias. With the increase of substrate bias the atomic ratio of Ti to Zr elements keeps almost constant, while the N to (Ti + Zr) ratio increases to about 1.1. The composite films present an enhanced nanohardness compared with the binary TiN and ZrN films deposited under the same condition. The film deposited with bias of −300 V possesses the maximum scratch critical load (Lc).  相似文献   

5.
Using a novel inductively coupled plasma enhanced chemical vapor deposition (ICP-CVD) with magnetic confinement system, Ti-Si-N films were prepared on single-crystal silicon wafer substrates by sputtering Ti and Si (5 at.%:1 at.%) alloyed target in argon/nitrogen plasma. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), atomic force microscopy (AFM) and Nano Indenter XP tester were employed to characterize nanostructure and performances of the films. These films were essentially composed of TiN nanocrystallites embedded in an amorphous Si3N4 matrix with maximum hardness value of 44 GPa. Experimental results showed that the film hardness was mainly dependent on the TiN crystallite size and preferred orientation, which could be tailored by the adjustment of the N2/Ar ratio. When the N2/Ar ratio was 3, the film possessed the minimum TiN size of 10.5 nm and the maximum hardness of 44 GPa.  相似文献   

6.
Influence of the process parameters like (i) sputtering gas pressure, (ii) target current, (iii) substrate bias voltage and (iv) substrate temperature of a reactive mid-frequency dual-magnetron sputtering on (a) surface defects and (b) mechanical properties of Ti/TiN multilayered films was investigated. The forming mechanisms of the observed droplets and craters were analyzed. Results showed when: (1) pressure of Ar/N2 gases PAr/N2 was at 0.31 Pa and substrate temperature was in certain range, the size and the density of the surface defects on the TiN films tended to decrease with increasing the target current and the pulsed bias voltage; (2) the optimal deposition parameters for accomplishing fewer surface defects were used, increasing the thickness of the Ti buffer layer decreased the microhardness in certain level, and the adhesion was firstly increased and then decreased as thickness reaching and/or beyond a critical value. Results also showed that selection of optimized process parameters evidently minimized the surface defects and improved the mechanical properties of the film.  相似文献   

7.
Hydroxyapatite thin films were grown on layered structures by Pulsed Laser Deposition with the goal of investigating the interface of the ceramic film with the substrate. The latter consisted of Si/TiN/Ti sandwich structures. This multilayer substrate was also prepared by laser ablation earlier in the same experimental session.This particular type of structure was chosen in order to induce the in situ growth of hydroxyapatite directly onto freshly deposited Ti. We tried this way to avoid previous direct Ti exposure to air, hence its oxidation. The subsequent depositions of multilayers were performed with the aid of a carousel multi-target system mounted inside the irradiation chamber. This allowed for selecting in order the respective TiN, Ti and HA targets without opening the chamber between individual depositions.X-ray diffractometry, transmission electron microscopy and selected area electron diffractometry studies revealed the formation at the interface of a transition complex phase, 2 to 25 nm thick, consisting of a mixture of TiO2 and CaP phase. The specific growth of TiN and Ti phases was also investigated.  相似文献   

8.
The aim of this work is to improve the mechanical properties of AISI 4140 steel substrates by using a TiN[BCN/BN]n/c-BN multilayer system as a protective coating. TiN[BCN/BN]n/c-BN multilayered coatings via reactive r.f. magnetron sputtering technique were grown, systematically varying the length period (Λ) and the number of bilayers (n) because one bilayer (n = 1) represents two different layers (tBCN + tBN), thus the total thickness of the coating and all other growth parameters were maintained constant. The coatings were characterized by Fourier transform infrared spectroscopy showing bands associated with h-BN bonds and c-BN stretching vibrations centered at 1400 cm−1 and 1100 cm−1, respectively. Coating composition and multilayer modulation were studied via secondary ion mass spectroscopy. Atomic force microscopy analysis revealed a reduction in grain size and roughness when the bilayer number (n) increased and the bilayer period decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period (Λ) was 80 nm (n = 25), yielding the relative highest hardness (∼30 GPa) and elastic modulus (230 GPa). The values for the hardness and elastic modulus are 1.5 and 1.7 times greater than the coating with n = 1, respectively. The enhancement effects in multilayered coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain increased hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayered coatings taking into account the thickness reduction at individual single layers that make up the multilayered system. The Hall-Petch model based on dislocation motion within layered and across layer interfaces has been successfully applied to multilayered coatings to explain this hardness enhancement.  相似文献   

9.
Thin films of titanium nitride (TiN) were deposited on stainless steel substrates by a modified deposition technique, double-layered shielded arc ion plating with vicarious circular holes (DL-SAIP). The results show that the TiN film with the distance of 10 mm between the double-layered shield plates had the least droplets. The deposition rate of the films prepared with the new technique was more homogeneous than that of all the other shielded arc ion plating. The film/substrate adhesion and microhardness values of the TiN films were higher than 40 N and 18 GPa, respectively. Thus such TiN thin films can be expected in applications.  相似文献   

10.
TiN, TiC and Ti(C, N) films have been respectively prepared using closed-field unbalanced magnetron sputtering ion plating technology, with graphite target serving as the C supplier in an Ar-N2 mixture gas. Bonding states and microstructure of the films are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) in combination with transmission electron microscopy (TEM). The friction coefficients are measured by pin-on-disc test and the wear traces of deposited films are observed by optical microscope. Results show that the TiN film and Ti(C, N) film exhibit dense columnar structure while the TiC film exhibits a mixed microstructure of main nanocrystallite and little amorphous phases. The Ti(C, N) film has the highest microhardness value and the TiC film has the lowest. Because of small amount of pure carbon with sp2 bonds existing in the film, the friction coefficients of Ti(C, N) and TiC multilayer films are lower than that of TiN film. In addition, the multilayer structure of films also contributes visually to decrease of friction coefficients. The TiC film has extremely low friction coefficient while the wear ratio is the highest in all of the films. The results also show that the Ti(C, N) film has excellent anti-abrasion property.  相似文献   

11.
A series of TiSixNy superhard coatings with different Si contents were prepared on M42 steel substrates using two Ti and two Si targets by reactive magnetron sputtering at 500 °C. These samples were subsequently vacuum-annealed at 500, 600, 700, 800 and 900 °C, respectively. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), microindenter, Rockwell hardness tester and scratch tester were applied to investigate the microstructure, phase configuration, hardness and adhesion properties of as-deposited and annealed samples. The results indicated that there were two bonds, TiN and Si3N4, in all presently deposited TiSixNy thin films, that structure was nanocomposite of nanocrystalline (nc-) TiN embedded into amorphous Si3N4 matrices. Annealing treatment below 900 °C played a little role in microstructure and hardness of the coatings although it greatly affected those of steel substrates. The film-substrate adhesion strength was slightly increased, followed by an abrupt decrease with increasing annealing temperature. Its value got to the maximum at 600 °C. Annealing had little effect on the friction coefficient with its value varying in the range of 0.39-0.40.  相似文献   

12.
Ti incorporated amorphous carbon (a-C) films with variant Ti contents were prepared by the unbalanced magnetron sputtering process. Scanning electron microscopy, ultraviolet Raman spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy were used to characterize the microstructure of a-C films. The hardness and lubricated tribological properties were assessed using nanoindentation and ball-on-disk tribometer. As the Ti content in a-C films increases from 0 to 15.2 at.%, the sp3 volume fraction, the internal stress and the hardness of the films decreases gradually, while the disorder of sp2 bond increases. The electrochemical tests reveal that the a-C films with lower than 1.5 at.% Ti possess good corrosion resistance in Hanks’ solution, while the a-C film with 15.2 at.% Ti is susceptible to crevice corrosion. The reduced friction of the a-C films is due to the sp2 bonded film surface and boundary lubrication of the Hanks’ solution. The a-C film with 3.1 at.% Ti exhibits the best wear resistance in Hanks’ solution among the studied films.  相似文献   

13.
In the present study, we explored the effect of metallic interlayers (Cu and Ti) and indentation loads (5-20 mN) on the mechanical properties of plasma produced diamond-like carbon (DLC) thin films. Also a comparison has been made for mechanical properties of these films with pure DLC and nitrogen incorporated DLC films. Introduction of N in DLC led to a drastic decrease in residual stress (S) from 1.8 to 0.7 GPa, but with expenses of hardness (H) and other mechanical properties. In contrast, addition of Cu and Ti interlayers between substrate Si and DLC, results in significant decrease in S with little enhancement of hardness and other mechanical properties. Among various DLC films, maximum hardness 30.8 GPa is observed in Ti-DLC film. Besides hardness and elastic modulus, various other mechanical parameters have also been estimated using load versus displacement curves.  相似文献   

14.
The aim of this work is to study the electrochemical behavior, under a corrosion-erosion condition, of [TiN/AlTiN]n multilayer coatings with bilayers periods of 1, 6, 12 and 24, deposited by a magnetron sputtering technique on Si (1 0 0) and AISI 1045 steel substrates.The TiN and AlTiN structure for multilayer coatings were evaluated via X-ray diffraction (XRD) analysis. Silica particles were used as an abrasive in the corrosion-erosion test within a 0.5 M H2SO4 solution at an impact angle of 30° over the surface. The electrochemical characterization was carried out using a polarization resistance technique (Tafel), in order to observe changes in the corrosion rate as a function of the bilayers number (n) or bilayer period (Λ). Corrosion rate values of 359 mpy in uncoated steel substrate and 1.016×10−6 mpy for substrate coated with [TiN/AlTiN]24 under impact angle of 30° were found. This behavior was related with the mass loss curve for all coatings and the surface damage was analyzed using SEM images. These results indicate that TiN/AlTiN multilayer coatings deposited on AISI 1045 steel provide a practical solution for applications in erosive-corrosive environments.  相似文献   

15.
Cu film and Ti/Cu film on polyimide substrate were prepared by ion implantation and ion beam assisted deposition (IBAD) techniques. Three-dimension white-light interfering profilometer was used to measure thickness of each film. The thickness of the Cu film and Ti/Cu film ranged between 490 nm and 640 nm. The depth profile, surface morphology, roughness, adhesion, nanohardness, and modulus of the Cu and Ti/Cu films were measured by scanning Auger nanoprobe (SAN), atomic force microscopy (AFM), and nanoindenter, respectively. The polyimide substrates irradiated with argon ions were analyzed by scanning electron microscopy (SEM) and AFM. The results suggested that both the Cu film and Ti/Cu film were of good adhesion with polyimide substrate, and ion beam techniques were suitable to prepare thin metal film on polyimide.  相似文献   

16.
Improvement of mechanical and tribological properties on AISI D3 steel surfaces coated with [Ti-Al/Ti-Al-N]n multilayer systems deposited in various bilayer periods (Λ) via magnetron co-sputtering pulsed d.c. method, from a metallic binary target; has been studied in this work exhaustively. The multilayer coatings were characterized in terms of structural, chemical, morphological, mechanical and tribological properties by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy, nanoindentation, pin-on-disc and scratch tests, respectively. The failure mode mechanisms were studied by optical microscopy. Results from X-ray diffraction analysis revealed that the crystal structure of TiAl/TiAlN multilayer coatings has a tetragonal and FCC NaCl-type lattice structures for Ti-Al and Ti-Al-N, respectively, i.e., it was found to be non-isostructural multilayers. An enhancement of both hardness and elastic modulus up to 29 GPa and 260 GPa, respectively, was observed as the bilayer periods (Λ) in the coatings were decreased. The sample with a bilayer period (Λ) of 25 nm and bilayer number n = 100 showed the lowest friction coefficient (∼0.28) and the highest critical load (45 N), corresponding to 2.7 and 1.5 times better than those values for the coating deposited with n = 1, respectively. These results indicate an enhancement of mechanical, tribological and adhesion properties, comparing to the [Ti-Al/Ti-Al-N]n multilayer systems with 1 bilayer at 26%, 63% and 33%, respectively. This enhancement in hardness and toughness for multilayer coatings could be attributed to the different mechanisms for layer formation with nanometric thickness such as the novel Ti-Al/Ti-Al-N effect and the number of interfaces that act as obstacles for the crack deflection and dissipation of crack energy.  相似文献   

17.
A set of Al/AlN multilayers with various modulation periods were prepared using DC magnetron sputtering method. Low angle X-ray diffraction (LAXRD) was used to analyze the layered structure of multilayers. The phase structure of the films was investigated with grazing angle X-ray diffraction (GAXRD). LAXRD results indicate that well-defined multilayer modulation structures are formed for the relatively larger modulation periods. However, the loss of mutilayered structure is detected in the multilayer with low modulation period. A very wide amorphous peak is observed in multilayer with modulation period of 4 nm. The multilayers show obvious crystallization at larger modulation periods, however, the diffraction peaks are much wider than the Al single layer because of the interruption of the continuous columnar grain growth by alternating deposition processes. Nanoindentation experiments were performed to study the mechanical properties as a function of multilayer modulation period. It is found that the hardness of the multilayers is greater than the hardness calculated from rule of mixtures. With the modulation periods adjusted, the multilayers are even harder than its hard component (AlN). A maximum hardness of 24.9 GPa, about 1.9 times larger than its hard component (AlN) and 3.7 times larger than the hardness calculated from the rule of mixtures, is found at the multilayer with modulation period of 16 nm. The wear test results show that the multilayers possess lower and stable friction coefficient, and superior wear properties.  相似文献   

18.
Two nanocomposite Ti-Cx-Ny thin films, TiC0.95N0.60 and TiC2.35N0.68, as well as one pure TiN, were deposited at 500 °C on Si(1 0 0) substrate by reactive unbalanced dc-magnetron sputtering. Oxidation experiments of these films were carried out in air at fixed temperatures in a regime of 250-600 °C with an interval of 50 °C. As-deposited and oxidized films were characterized and analyzed using X-ray diffraction (XRD), microindentation, Newton's ring methods and atomic force microscopy (AFM). It was found that the starting oxidation temperature of nanocomposite Ti-Cx-Ny thin films was 300 °C irrespective of the carbon content; however their oxidation rate strongly depended on their carbon content. Higher carbon content caused more serious oxidation. After oxidation, the film hardness value remained up to the starting oxidation temperature, followed by fast decrease with increasing heating temperature. The residual compressive stress did not show a similar trend with the hardness. Its value was first increased with increase of heating temperature, and got its maximum at the starting oxidation temperature. A decrease in residual stress was followed when heating temperature was further increased. The film surface roughness value was slightly increased with heating temperature till the starting oxidation temperature, a great decrease in surface roughness was followed with further increase of heating temperature.  相似文献   

19.
Porous nanocrystalline Ti(C0.7N0.3) film on Ti6Al4V substrate was prepared by plasma electrolytic carbonitriding (PECN). The film was characterized and analyzed by using a variety of analytical techniques, such as XRD, SEM, EDX, TEM, FESEM, Rockwell C indenter, scratch tester, Vickers microhardness tester and ring-on-block tribometer. The results showed that the film was about 15 μm thick and its hardness was Hv 2369 at a load of 0.2 N. The adhesion of the film was characterized by Lc and Pc value, and was found to be about 42 N and more than 800 N, respectively. The friction coefficients and wear volume loss of the PECN-treated samples sliding against a steel counterpart were much less than those of the untreated Ti6Al4V. The film possessed a good wear-resistance and antifriction under oil-lubricated condition due to its high hardness, adhesion and fracture toughness. Also, the porous surface morphology of the Ti(C0.7N0.3) film contributed to the enhanced tribological resistance by promoting the formation of lubricant film and entrapping wear debris.  相似文献   

20.
ZrC/ZrN and ZrC/TiN multilayers were grown on (1 0 0) Si substrates at 300 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser. X-ray diffraction investigations showed that films were crystalline, the strain and grain size depending on the nature and pressure of the gas used during deposition. The elemental composition, analyzed by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), showed that films contained a low level of oxygen contamination. Simulations of the X-ray reflectivity (XRR) curves acquired from films indicated a smooth surface morphology, with roughness below 1 nm (rms) and densities very close to bulk values.Nanoindentation results showed that the ZrC/ZrN and ZrC/TiN multilayer samples exhibited hardness values between 30 and 33 GPa, slightly higher than the values of 28-30 GPa measured for pure ZrC, TiN and ZrN films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号