首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
CdTe/CdS heterojunction solar cell structure has been fabricated using simple, easy and low-cost methods. To fabricate this structure, CdS and CdTe thin films are deposited onto FTO-coated conducting glass substrates by chemical bath deposition (CBD) and electrodeposition method, respectively. The optimized growth conditions are chosen for both CdS and CdTe films by investigating the optical, structural and morphological properties of both the as-deposited and annealed films. Optical measurement showed that CdS films have higher transmittance and lower absorbance, and CdTe films have lower transmittance and higher absorbance in the near infrared region. The band gap of CdS films is estimated to lie in the range 2.29–2.41 eV and that of CdTe films is in the range 1.53–1.55 eV. X-ray diffraction (XRD) study reveals that CdS and CdTe films are polycrystalline with preferential orientation of (1 1 1) plane. Scanning electron microscopy (SEM) study reveals that both films are smooth, void-free and uniformly distributed over the surface of the substrate. Fabricated CdTe/CdS structure showed the anticipated rectifying behaviour, and the rectifying behaviour is observed to improve due to CdCl2 treatment.  相似文献   

2.
In this work, a study of synthesis of thin films of Zn(O;OH)S and In(O;OH)S deposited by chemical bath deposition (CBD) is presented. The thin films of Zn(O;OH)S and In(O;OH)S were deposited from different chemical bath systems on absorber layers of CuInS2 (CIS), indium tin oxide substrates (ITO) and soda lime glass substrates (SL). The differences on the growth rate, optical, morphological and structural properties of the thin films Zn(O;OH)S and In(O;OH)S are studied. The Growth studies showed that thin films of Zn(O;OH)S and In(O;OH)S grown faster on CIS than on SL and ITO substrates. The optical and morphological studies showed that both thin films present high transmittance in visible electromagnetic spectrum and covered uniformly the surface of the substrate, furthermore it was observed that thin films of Zn(O;OH)S and In(O;OH)S were polycrystalline. Finally, the results suggest that thin films of Zn(O;OH)S and In(O;OH)S obtained in this work could be used as buffer layer to replace the thin films of CdS, which are conventionally used as buffer layer in chalcopyrite based solar cells.  相似文献   

3.
We study the initial growth stages of CdS thin films deposited by an ammonia-free chemical bath deposition process. This ammonia-free process is more environmentally benign because it reduces potential ammonia release to the environment due to its high volatility. Instead of ammonia, sodium citrate was used as the complexing agent. We used atomic force microscopy (AFM), Rutherford backscattering (RBS) and X-ray photoelectron spectroscopy (XPS) to investigate the morphological and chemical modifications at the substrate surface during the first initial stages of the CdS deposition process. Additionally, X-ray diffraction (XRD) and optical transmission spectroscopy measurements were carried out to compliment the study. XPS results show that the first nucleation centers are composed by Cd(OH)2 which agglomerate in patterns of bands, as demonstrated by AFM results. It is also observed that the conversion to CdS (by anionic exchange) of the first nucleus begins before the substrate surface is completely covered by a homogenous film.  相似文献   

4.
张传军  邬云骅  曹鸿  高艳卿  赵守仁  王善力  褚君浩 《物理学报》2013,62(15):158107-158107
在科宁7059玻璃, FTO, ITO, AZO四种衬底上磁控溅射CdS薄膜, 并在CdCl2+干燥空气380 ℃退火, 分别研究了不同衬底和退火工艺对CdS薄膜形貌、结构和光学性能的影响. 扫描电子显微镜形貌表明: 不同衬底原位溅射CdS薄膜的形貌不同, 退火后相应CdS薄膜的晶粒度和表面粗糙度明显增大. XRD衍射图谱表明: 不同衬底原位溅射和退火CdS薄膜均为六角相和立方相的混相结构, 退火前后科宁7059玻璃, FTO, AZO衬底上CdS薄膜有 H(002)/C(111) 最强衍射峰, ITO衬底原位溅射CdS薄膜没有明显的最强衍射峰, 退火后出现 H(002)/(111) 最强衍射峰. 紫外-可见分光光度计分析表明: AZO, FTO, ITO, 科宁7059玻璃衬底CdS薄膜的可见光平均透过率依次减小, 退火后相应衬底CdS薄膜的可见光平均透过率增大, 光学吸收系数降低; 退火显著增大了不同衬底CdS薄膜的光学带隙. 分析得出: 上述结果是由于不同衬底类型和退火工艺对CdS多晶薄膜的形貌、结构和带尾态掺杂浓度改变的结果. 关键词: CdS薄膜 磁控溅射 退火再结晶 带尾态  相似文献   

5.
Cadmium sulfide thin films have been deposited on glass substrates by simple and cost effective chemical bath deposition technique. Triethanolamine was used as a complexing agent. The preparative parameters like ion concentration, temperature, pH, speed of substrate rotation and deposition time have been optimized for good quality thin films. The ‘as-grown’ films are characterized for structural, electrical, optical and photoelectrochemical (PEC) properties. The X-ray diffraction (XRD) studies reveal that the films are polycrystalline in nature. Energy-dispersive analysis by X-ray (EDAX) shows that films are cadmium rich. Uniform deposition of CdS thin films on glass substrate is observed from scanning electron microscopy (SEM) and atomic force microscopy (AFM) micrographs. Optical studies reveal a high absorption coefficient (104 cm−1) with a direct type of transition. The band gap is estimated to be 2.47 eV. The film shows n-type conduction mechanism. The photoelectrochemical (PEC) cell with CdS thin film as a photoanode and sulfide/polysulfide (1 M) solution as an electrolyte have been constructed and investigated for various cell parameters. The solar to electrical conversion efficiency (η) and fill factor (ff) are found to be 0.049% and 0.36, respectively.  相似文献   

6.
In this paper, we report structural, morphological, electrical studies of copper iodide (CuI) thin films deposited onto glass substrates by chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) methods. CuI thin films were characterized for their structural, morphological and wettability studies by means of X-ray diffraction (XRD), FT-Raman spectroscopy, scanning electron microscopy (SEM), optical absorption, and contact angle measurement methods. Thickness of thin films was 1 ± 0.1 μm measured by gravimetric weight difference method. The CuI thin films were nanocrystalline, with average crystal size of ~60 nm. The FT-IR study confirmed the formation of CuI on the substrate surface. SEM images revealed the compact and cube like structure for CuI thin films deposited by CBD and SILAR methods, respectively. Optical absorption study revealed optical energy gaps as 2.3 and 3.0 eV for CBD and SILAR methods, respectively. Wettability study indicated that CuI thin films deposited by SILAR method are more hydrophobic as compared to CBD method.  相似文献   

7.
以氯化铵、氯化镉、氢氧化钾和硫脲为反应物采用化学水浴法制备了硫化镉薄膜,为了作对比研究,采用射频磁控溅射以硫化镉为靶材,氩气为溅射气体,制备了硫化镉薄膜。采用X射线衍射、扫描电子显微镜和紫外-可见光光谱仪分别表征了硫化镉薄膜的结构、形貌和光学吸收特性。结果表明,采用以上两种方法制备的硫化镉均具有(002)择优取向,溅射法制备的硫化镉薄膜较致密,薄膜表面较光滑,平均晶粒尺寸在20~30nm;水浴法制备的硫化镉薄膜颗粒尺寸较小,缺陷较多。除了在短波段溅射所得硫化镉薄膜的透过率略差于水浴法所得硫化镉薄膜之外,溅射法制备的硫化镉薄膜的性能整体上优于水浴法制备的薄膜。两种方法制备的硫化镉薄膜的能隙在2.3~2.5eV。  相似文献   

8.
Two kinds of cadmium sulfate (CdS) thin films have been grown at 600 °C onto Si(111) and quartz substrates using femtosecond pulsed laser deposition (PLD). The influence of substrates on the structural and optical properties of the CdS thin films grown by femtosecond pulsed laser deposition have been studied. The CdS thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), photoluminescence (PL) and Raman spectroscopy. Although CdS thin films deposited both on Si(111) and quartz substrates were polycrystalline and hexagonal as shown by the XRD , SEM and AFM results, the crystalline quality and optical properties were found to be different. The size of the grains for the CdS thin film grown on Si(111) substrate were observed to be larger than that of the CdS thin film grown on quartz substrate, and there is more microcrystalline perpendicularity of c-axis for the film deposited on the quartz substrate than that for the films deposited on the Si substrate. In addition, in the PL spectra, the excitonic peak is more intense and resolved for CdS film deposited on quartz than that for the CdS film deposited on Si(111) substrate. The LO and TO Raman peaks in the CdS films grown on Si(111) substrate and quartz substrate are different, which is due to higher stress and bigger grain size in the CdS film grown on Si(111) substrate, than that of the CdS film grown on the amorphous quartz substrate. All this suggests that the substrates have a significant effect on the structural and optical properties of thin CdS films. PACS 81.15.Fg; 81.05.Ea; 78.20.-e; 78.67.-n; 42.62.-b  相似文献   

9.
The results obtained by investigating the surface morphology and optical properties of thin CdS films formed on transparent glass and glass/indium-tin oxide (ITO) substrates via the chemical and electro-chemical methods are presented. Thin cadmium sulfide films are employed as optical windows in thin-film polycrystalline solar cells. Closely packed cadmium sulfide nanoparticles are observed on the conducting oxide (ITO) surface by means of atomic-force microscopy. Large particles (150–300 nm) comprise smaller particles with sizes of 20–30 nm. Thin CdS layers are characterized by a relatively high level of transmission (~60%) in the long-wavelength spectral region (520–600 nm).  相似文献   

10.
Nanostructured cadmium sulfide (CdS) thin films have been prepared by chemical bath deposition (CBD) method and after post deposition annealing of the thin films at different temperatures, photoluminescence (PL) property has been studied. The effects of various photoexcitation wavelengths on the PL behaviour of different annealed films of CdS were studied by recording the PL spectra. The intensity of PL, the profile of the PL spectra and the effects of photoexcitation wavelength depend drastically on the temperature of the post deposition annealing of the thin films. The XRD patterns of the films show the presence of both the hexagonal and cubic phases (mixed phases). The emission peak arises from the surface defects of the CdS nanocrystalline thin films. Significant modification in the surface morphology of the CdS films upon annealing has been observed from the FESEM images. The morphology of the thin films is expected to influence the PL behaviour of the CdS thin films. The quantum size effect and size dependant PL have been observed.  相似文献   

11.
Nanocrystalline indium tin oxide (ITO) thin films were prepared on clay-1 (Clay-TPP-LP-SA), clay-2 (Clay-TPP-SA) and glass substrates using ion-beam sputter deposition method. X-ray diffraction (XRD) patterns showed that the as-deposited ITO films on both clay-1 and clay-2 substrates were a mixture of amorphous and polycrystalline. But the as-deposited ITO films on glass substrates were polycrystalline. The surface morphologies of as-deposited ITO/glass has smooth surface; in contrast, ITO/clay-1 has rough surface. The surface roughnesses of ITO thin films on glass and clay-1 substrate were calculated as 4.3 and 83 nm, respectively. From the AFM and SEM analyses, the particle sizes of nanocrystalline ITO for a film thickness of 712 nm were calculated as 19.5 and 20 nm, respectively. Optical study showed that the optical transmittance of ITO/clay-2 was higher than that of ITO/clay-1. The sheet resistances of as-deposited ITO/clay-1 and ITO/clay-2 were calculated as 76.0 and 63.0 Ω/□, respectively. The figure of merit value for as-deposited ITO/clay-2 (12.70 × 10−3/Ω) was also higher than that of ITO/clay-1 (9.6 × 10−3/Ω), respectively. The flexibilities of ITO/clay-1 and ITO/clay-2 were evaluated as 13 and 12 mm, respectively. However, the ITO-coated clay-2 substrate showed much better optical and electrical properties as well as flexibility as compared to clay-1.  相似文献   

12.
A low-temperature chemical bath deposition (CBD) technique has been used for the preparation of Mn3O4 thin films onto glass substrates. The kinetic behavior and the formation mechanism of the solid thin films from the aqueous solution have been investigated. Structure (X-ray diffraction and Raman), morphological (atom force microscope), and optical (UV-vis-NIR) characterizations of the deposited films are presented. The results indicated that the deposited Mn3O4 thin films of smooth surface with nanosized grains were well crystalline and the optical bandgap of the film was estimated to be 2.54 eV.  相似文献   

13.
Silver thin films were deposited on glass slide substrates at room temperature by the chemical bath deposition (CBD) technique, using silver nitrate (AgNO3) as Ag+1 source and triethanolamine [(N(CH2CH2OH)3)] as the complex reductor agent. We determined the conditions of the CBD process to obtain homogeneous, opaque silver films with good adhesion to the substrate and white coloration. The silver films were studied by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. The results show that the films are composed of several layers with different morphology depending on the deposition time. In all the cases, the crystalline structure of the films was the face cubic centered phase with a moderate [111] texture. Strains and stresses were calculated by the Vook-Witt grain interaction model.  相似文献   

14.
Polycrystalline cadmium sulfide (CdS) thin-films were deposited on glass substrate by chemical bath deposition (CBD) and vacuum evaporation (VE) techniques. VE-CdS films consisted primarily of hexagonal phase, whereas CBD CdS films containing primarily the cubic form. VE-grown films were shown to have better crystallinity than CBD-grown films. The grain size of the CBD films is smaller than the ones of VE films. VE-CdS films exhibited relatively high transmittance in the above-gap region and band gap compared with CBD films. However, CdTe solar cells with these low quality CBD-CdS layers yield higher and more stable characteristics. Current-voltage-temperature measurements showed that the current transport for both cells was controlled by both tunneling and interface recombination but the cells with CBD-CdS displayed less tunneling.  相似文献   

15.
立方氮化硼薄膜的生长特性与粘附性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
用X射线衍射技术、红外吸收光谱、扫描电子显微镜、X射线光电子能谱对热丝辅助射频等离子体化学汽相沉积法制备的立方氮化硼(c-BN)薄膜的生长特性和粘附性进行了研究.改变生长条件,在Si、不锈钢和Ni衬底上沉积c-BN薄膜,进而研究了c-BN薄膜的质量和生长条件与衬底之间的关系.实验发现,Ni衬底上生长的薄膜c-BN含量较高,且粘附性好.当Si衬底上溅射一层Ni过渡层,再生长c-BN薄膜,薄膜中c-BN含量提高,与Si衬底的粘附性也显著增强. 关键词:  相似文献   

16.
In this work thin CdS films using glycine as a complexing agent were fabricated by chemical bath deposition and then doped with silver (Ag), by an ion exchange process with different concentrations of AgNO3 solutions. The CdS films were immersed in silver solutions using different concentrations during 1 min for doping and after that the films were annealed at 200 °C during 20 min for dopant diffusion after the immersion on the AgNO3 solutions. The aim of this research was to know the effects of different concentrations of Ag on the optical and structural properties of CdS thin films. The optical band gap of the doped films was determined by transmittance measurements, with the results of transmittance varying between 35% and 70% up to 450 nm in the electromagnetic spectra and the band gap varying between 2.31 and 2.51 eV depending of the silver content. X-ray photoelectron spectroscopy was used to study the influence of silver on the CdS:Ag films, as a function of the AgNO3 solution concentration. The crystal structure of the thin CdS:Ag films was studied by the X-ray diffraction method and the film surface morphology was studied by atomic force microscopy. Using the ion exchange process, the CdS films’ structural, optical and electric characteristics were modified according to silver nitrate concentration used.  相似文献   

17.
CdS thin films have been grown on Si(1 1 1) and quartz substrates using femtosecond pulsed laser deposition. X-ray diffraction, atomic force microscopy, photoluminescence measurement, and optical transmission spectroscopy were used to characterize the structure and optical properties of the deposited CdS thin films. The influence of the laser fluence (laser incident energy in the range 0.5–1.5 mJ/pulse) on the structural and optical characterizations of CdS thin films has been studied. The results indicate that the structure and optical properties of the CdS thin films can be improved as increasing the per pulse output energy of the femtosecond laser to 1.2 mJ. But when the per pulse output energy of the femtosecond laser is further increased to 1.5 mJ, which leads to the degradation of the structure and optical properties of the CdS thin films.  相似文献   

18.
A chemical synthesis process for the fabrication of CdO nanowires is described. In the present work, transparent and conductive CdO films were synthesized on the glass substrate using chemical bath deposition (CBD) at room temperature. These films were annealed in air at 623 K and characterized for the structural, morphological, optical and electrical properties were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical and electrical resistivity. The XRD analysis showed that the as-deposited amorphous can be converted in to polycrystalline after annealing. Annealed CdO nanowires are 60-65 nm in diameter and length ranges typically from 2.5 to 3 μm. The optical properties revealed the presence of direct and indirect band gaps with energies 2.42 and 2.04 eV, respectively. Electrical resistivity measurement showed semiconducting behavior and thermoemf measurement showed n-type electrical conductivity.  相似文献   

19.
In this work we report on the properties of chemically deposited CdS thin films in an ammonia-free cadmium-sodium citrate system. We studied the influence on the properties of the films of the pH control of the reaction solution. For this, we deposited two types of CdS films employing two different types of reaction solutions. The only difference between both reaction solutions was the addition of a pH buffer in one of them in order to control its pH throughout the deposition process. Several sets of CdS films were deposited from growth solutions with different contents of Cd to determine also the influence of this parameter on the properties of the films. The CdS films were studied by X-ray diffraction, optical transmission and reflection spectroscopy and scanning electron microscopy measurements. We found that the properties of the films depend both on the amount of Cd in the growth solutions and on their pH control. The increase in Cd in the reaction solution yields to films with shorter lattice constant and then higher energy band gap. On the other hand, the pH control of the reaction produces higher deposition rate, larger final thickness and higher energy band gaps in the CdS films.  相似文献   

20.
ZnS thin films have been prepared by chemical bath deposition (CBD) technique onto glass substrates deposited at about 80 °C using aqueous solution of zinc sulfate hepta-hydrate, ammonium sulfate, thiourea, ammonia and hydrazine hydrate. Ammonia and hydrazine hydrate were used as complexing agents. The influence of the ratio of [Zn]/[S] on formation and properties of ZnS thin films has been investigated. The ratio of [Zn]/[S] was changed from 3:1 to 1:9 by varying volumes and/or concentrations of zinc sulfate hepta-hydrate and thiourea in the deposition solution. The structural and morphological characteristics of films have been investigated by X-ray diffraction (XRD), scanning electron microscope and UV-vis spectroscopic analysis. ZnS films were obtained with the [Zn]/[S] ratio ranged from1:1 to 1:6. In the cases of [Zn]/[S] ratio ≥ 3:1 or ≤1:9, no deposition was found. Transparent and polycrystalline ZnS film was obtained with pure-wurtzite structure at the [S]/[Zn] ratio of 1:6. The related formation mechanisms of CBD ZnS are discussed. The deposited ZnS films show good optical transmission (80-90%) in the visible region and the band gap is found to be in the range of 3.65-3.74 eV. The result is useful to further develop the CBD ZnS technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号