首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用传统熔融-淬冷法制备了一系列新型(100-x) (4GeSe2-In2Se3) -xAgI(x=20,30,40 mol%)硫系玻璃样品.利用X射线衍射分析、差热分析、可见-近红外吸收光谱、红外透过光谱、喇曼分析等技术手段研究了该玻璃系统的组成、结构、热稳定性和光学特性等.利用Tauc方程计算出了样品的间接带隙;测试了部分样品在不同升温速率下的差示扫描量热曲线,并采用Kissinger法计算了玻璃样品的析晶活化能.X射线衍射数据表明,该玻璃体系在较宽的组分范围内有良好的非晶特性,成玻范围较宽;差热分析和析晶动力学研究表明,玻璃样品70(4GeSe2-In2Se3)-30AgI具有较好的热稳定性(ΔT=114℃)和较高的活化能(Ea=320.4 kJ/mol).随着AgI含量的增加,玻璃的短波吸收限蓝移,并且光学带隙有增大的趋势.此外,红外透过光谱分析表明该玻璃体系具有良好的红外透过性能,其红外截止波长不会随着AgI含量的增加而发生明显变化,皆为16μm左右.  相似文献   

2.
GeSe2-Ga2Se3-CsI chalcohalide glasses had been prepared by the melt-quenching technique. With the addition of CsI, the short wavelength cut-off edge of the glasses shifts to the short wavelength gradually, while the long wavelength cut-off edge located at ∼16 μm is nearly unchanged. Thermal properties were measured by Differential Thermal Analysis (DTA). From the heating rate dependence of crystallization temperature, the activation energy for crystallization (E) and the order parameter (n) were calculated by the Kissinger equation. The results show that the activation energy of crystallization decreases dramatically with increasing of CsI content, and the most probable crystallization mechanism is volume controlled one-dimensional growth.  相似文献   

3.
A systematic compositional study of a new family of chalcogenide glasses, transparent from the visible range up to 16 μm has been performed. Numerous glass forming regions were explored in the GeSe2-Ga2Se3-MX system (MX = alkali halide) in order to understand the role of alkali halides and the effect of Ga substitution for Sb in the glass structure. To that avail, several ternary diagrams were investigated, and optical and thermo-mechanical measurements were performed. It is shown that the introduction of an alkali halide in the GeSe2-Ga2Se3 glasses increased the band-gap energy Eg by stabilizing electrons from the lone pairs of selenium. However, the glass hardness was lowered due to a decrease in the glass network reticulation. The chemical resistance was studied in a glass containing high CsCl content. Significant corrosion occurred when the glass was exposed to hot water for several hours. There is a great deal of interest in these glasses for use in thermal imaging devices, as they permit the alignment of infrared optical systems with visible red light. Furthermore, the low cost of raw materials and the possibility of shaping these glasses into lenses by molding could extend their utilization from defense to civilian applications. PACS 61.43.Fs; 62.20.-x; 81.05.-t  相似文献   

4.
Ultrafast third-order nonlinear optical responses of GeS2-In2S3-CsI chalcohalide glasses have been measured by using the femtosecond time-resolved optical Kerr effect (OKE) technique at a wavelength of 820 nm. The third-order nonlinear susceptibility was estimated to be as large as 5.12×10−13 esu. The full width at half maximum of the Kerr signal was 120 fs and its response was dominantly assigned to the ultrafast distortion of the electron cloud. The relationship between the structural units and the third-order nonlinear optical responses was analysed by Raman spectra. It is suggested that the covalent bonds of S-Ge or S-In constituting the tetrahedral units [GeS4/2] or [InS4−xIx], respectively, play an important role in the ultrafast third-order nonlinear optical responses of these chalcohalide glasses.  相似文献   

5.
Bismuth sulfide (Bi2S3) and antimony sulfide (Sb2S3) nanorods were synthesized by hydrothermal method. The products were characterized by UV-vis spectrophotometer, X-ray powder diffraction (XRD) and transmission electron microscope (TEM). Bi2S3 and Sb2S3 nanorods were measured by Z-scan technique to investigate the third-order nonlinear optical (NLO) properties. The result of NLO measurements shows that the Bi2S3 and Sb2S3 nanorods have the behaviors of the third-order NLO properties of both NLO absorption and NLO refraction with self-focusing effects. The third-order NLO coefficient χ(3) of the Bi2S3 and Sb2S3 nanorods are 6.25×10−11 esu and 4.55×10−11 esu, respectively. The Sb2S3 and Bi2S3 nanorods with large third-order NLO coefficient are promising materials for applications in optical devices.  相似文献   

6.
Ultrafast third-order nonlinear optical responses of 4(1?x)/5GeS2-(1?x)/5Ga2S3-xCdS (x=0.05, 0.10 and 0.15 in mol%) chalcogenide glasses was investigated by using the femtosecond time-resolved optical Kerr effect technique at a wavelength of 800 nm. The largest third-order nonlinear susceptibility of all samples was estimated to be 1.65×10?13 esu. An ultrafast nonlinear response time of about 250 fs was observed, which was dominantly assigned to the ultrafast distortion of the electron cloud under femtosecond laser excitation. A nonlinear relationship between the third-order nonlinear susceptibility and the introduced amount of CdS was discussed, suggesting a possible disturbance between different polarizable bonds in the glass system.  相似文献   

7.
Glasses in the system Ge-Sb-S/Se, expected to have high nonlinear index, have been elaborated with different S/Se ratio in order to increase the nonlinear optical properties of these glasses. We report results of a systematic study examining the relationship of the physical properties to the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex with x=0, 0.05, 0.10, 0.20, 0.50 and 0.70 where the substitution of S for Se has been made. The decrease of the glass transition temperature and the increase of the density with the progressive substitution of S for Se have been correlated, in accordance with the red shift of the absorption band gap, to the progressive decrease of corner-sharing GeS4/2 units for 0.05<x<0.50 and of the progressive increase of corner-sharing GeSe4/2 units and Ge-Se-Ge when x>0.50.  相似文献   

8.
The results of the femtosecond optical heterodyne detection of optical Kerr effect at 805 nm with the 80 fs ultrafast pulses in amorphous Ge10As40S30Se20 film is reported in this paper. The film shows an optical non-linear response of 200 fs under ultrafast 80 fs-pulse excitation, and the values of real and imaginary parts of non-linear susceptibility χ(3) were 9.0×10−12 and −4.0×10−12 esu, respectively. The large third-order non-linearity and ultrafast response are attributed to the ultrafast distortion of the electron orbits surrounding the average positions of the nucleus of Ge, As, S and Se atoms. This Ge10As40S30Se20 chalcogenide glass would be expected as a promising material for optical switching technique.  相似文献   

9.
A new family of Tellurium-based glasses GeTe4-Ga2Te3-AgX (X = I/Br/Cl) has been investigated and the glass-forming region was determined. Properties measurements include XRD, DTA, vis-NIR, and IR transmission spectra. The amorphous nature of the glasses has been proved by X-ray diffraction. Among the three systems, the GeTe4-Ga2Te3-AgI glass system shows superior glass-forming ability and thermal stability. The maximum value of ΔT (= Tx − Tg) lies at about 110 °C for the glass composition 60GeTe4-2-20Ga2Te3-20AgI, while for 60GeTe4-20Ga2Te3-20AgBr and 60GeTe4-20Ga2Te3-20AgCl, the ΔT values are both only 88 °C. Most of the studied glasses have a wide optical transmission window from 1.8 to 25 μm.  相似文献   

10.
A novel analysis of optical absorption tails of inorganic network glasses is shown to provide important information on the structure of the glass. The anomalous composition and temperature dependence of absorption tails in GexSe1?x and AsxSe1?x systems indicate that these glasses retain locally layered structures at particular stoichiometries corresponding to GeSe2 and As2Se3, and a reversible structural change is taking place well below the glass transition temperature. A phenomenological model for the absorption tail slope of glasses is proposed, analogous to the Urbach rule for crystalline materials.  相似文献   

11.
The ultrafast nonlinear optical properties of Bi2O3-B2O3-SiO2 oxide glass were investigated using a femtosecond optical Kerr shutter (OKS) at wavelength of 800 nm. The nonlinear response time of this Bi2O3-doped glass was measured to be <90 fs. The nonlinear refractive-index n2 was estimated to be 1.6 × 10−14 cm2/W. Measurements for the dependence of Kerr signals on the polarization angle between the pump and probe beams showed that the Kerr signals induced by 30-fs pulse laser arose mainly from the photoinduced birefringence effect.  相似文献   

12.
The green up-conversion fluorescence of Er3+ ions doped in an nonlinear optical ZnO-Nb2O5-TeO2 glass was observed by using 800 nm excitation from a regenerative femtosecond (fs) Ti:Sapphire laser. The detailed analysis on two fluorescence lines at 526 nm (2H11/2-4I15/2) and 548 nm (4S3/2-4I15/2) revealed the fs laser heating of the multi-component TeO2-based glass, which was possibly due to its nonlinear absorption of the host glass via the imaginary part of the third-order optical susceptibility (χ(3)). The result was compared with that of a Er3+-doped aluminosilicate glass under the same irradiation condition. When the fs laser was irradiated to the multicomponent TeO2-based glass in the power density of 150 TW/cm2, the laser spot was heated up to ∼520 K, which however was still less than the glass transition temperature (Tg=688 K). This technique provides a useful sensing method of laser spot temperature even inside transparent materials.  相似文献   

13.
In this paper, we present the spectral results of Dy3+ and Pr3+ (1.0 mol%) ions doped Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses. Measurements of X-ray diffraction (XRD), differential scanning calorimetry (DSC) profiles of these rare-earth ions doped glasses have been carried out. From the DSC thermograms, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. The emission spectrum of Dy3+:glass has shown two emission transitions 4F7/26H15/2 (482 nm) and 4F7/26H13/2 (576 nm) with an excitation at 390 nm wavelength and Pr3+:glass has shown a strong emission transition 1D23H4 (610 nm) with an excitation at 445 nm. Upon exposure to UV radiation, Dy3+ and Pr3+ glasses have shown bright yellow and reddish colors, respectively, from their surfaces.  相似文献   

14.
The non-resonant third-order non-linear optical properties of amorphous Ge20As25Se55 films were studied experimentally by the method of the femtosecond optical heterodyne detection of optical Kerr effect. The real and imaginary parts of complex third-order optical non-linearity could be effectively separated and their values and signs could be also determined, which were 6.6 × 10−12 and −2.4 × 10−12 esu, respectively. Amorphous Ge20As25Se55 films showed a very fast response in the range of 200 fs under ultrafast excitation. The ultrafast response and large third-order non-linearity are attributed to the ultrafast distortion of the electron orbitals surrounding the average positions of the nucleus of Ge, As and Se atoms. The high third-order susceptibility and a fast response time of amorphous Ge20As25Se55 films makes it a promising material for application in advanced techniques especially in optical switching.  相似文献   

15.
Effects of WO3 and CdO on the spectroscopic properties of Nd3+ doped tellurite glasses were investigated. The optical band gaps and Urbach energies of the samples were determined using the dependence of the absorption coefficient on the photon energy. The Urbach energies were found to vary from 0.18 to 0.25 eV as the WO3 content in the binary glasses decreased from 20.0 to 10.0 mol% while the optical band gap of the same glasses did not show an appreciable dependence on the glass composition. Judd-Ofelt (Ωt) parameters were calculated from the optical absorption spectra measured at room temperature. In all the glasses the J-O parameters follow the same trend as Ω2>Ω6>Ω4. The J-O intensity parameters were used to compute the radiative properties such as the radiative transition probabilities (Aed), branching ratios (β) and radiative lifetimes (τr) for all the possible fluorescence bands. The fluorescence spectra obtained upon 805.2 nm excitation exhibited an intense emission band centered at 1064 nm (4F3/24I11/2) and two weak bands at 910 nm (4F3/24I9/2), and 1340 nm (4F3/24I13/2). The stimulated emission cross-section for the 1064 nm emission was determined using the emission spectra. The highest gain bandwidth (σe×ΔλP) was determined to be 155.4 for the 0.79TeO2-0.15WO3-0.05CdO ternary glass composition, which could be more useful as promising material for the design and development of fiber amplifiers and lasers.  相似文献   

16.
Raman investigations were carried out for various compositions of chalcogenide glasses in the GeS2-Ga2S3-CdS system. Addition of Ga2S3 into GeS2 results in the formation of metal-metal bonds and edge-shared GaS4/2 tetrahedra. Ge2+ ions may surround [GaS4/2]1− tetrahedra acting as charge compensators. Upon the addition of CdS into the GeS2-Ga2S3 system, the number of the metal-metal bonds and edge-shared GaS4/2 tetrahedra decreases, resulting in the formation of corner-shared tetrahedra with non-bridging sulfurs (NBS). Cd2+ ions can be dissolved into the glass network as charge compensators for these NBS and exited few [GaS4/2]1− tetrahedra. The high solubility of CdS is ascribed to the dissociation of metal-metal bonds and edge-shared tetrahedra in these Ga-containing glasses.  相似文献   

17.
Utilizing Maker fringe (MF) method, second-harmonic generation (SHG) has been observed within the GeS2-Ga2S3-CdS pseudo-ternary glasses through thermal/electrical poling technique. The SHG phenomenon was considered to be the result of breakage of the glassy macroscopic isotropy originated from the reorientations of dipoles during the thermal/electrical poling process. Under the same poling condition conducted with 5 kV and 280 °C for 30 min, the maximum value of second-order nonlinear susceptibility χ(2) of the poled (100−x)GeS2·x(0.5Ga2S3·0.5CdS) glasses was obtained to be ≈4.36 pm/V when the value of x is equal to 30. Nonlinear dependence of χ(2) on compositions of these glasses can be well explained according to the theory related to the reorientation of dipoles.  相似文献   

18.
The nonlinear optical (NLO) properties of a novel cluster Polymer {WS4Cu4I2(bpe)3}n solution are studied by using Z-scan technique with laser pulses of 4.5 ns pulse-width at a wavelength of 532 nm. The results show that the cluster solution possesses strong nonlinear absorption and refraction. Nonlinear refraction of the cluster is composed of third-order nonlinear refraction and transient thermal effect. The thermal effect is mainly due to the strong nonlinear absorption. Numerical simulations obtained by solving simultaneously photo-acoustic and electromagnetic wave equations, agrees basically with experimental results.  相似文献   

19.
Lead bismuth arsenate glasses mixed with different concentrations of WO3 (ranging from 0 to 6.0 mol%) were synthesized. Differential thermal analysis (DTA), optical absorption, ESR and IR spectral studies have been carried out. The results of DTA have indicated that there is a gradual decrease in the resistance of the glass against devitrification with increase in the concentration of WO3 upto 4.0 mol%.The optical absorption spectra of these glasses exhibited a relatively broad band peaking at about 880 nm identified due to dxydx2y2 transition of W5+ ions; this band is observed to be more intense in the spectrum of glass containing 4.0 mol% of WO3. Further, two prominent kinks attributed to 3P01S0, 1D2 transitions of Bi3+ ions have also been located in the absorption spectra. The ESR spectra of these glasses recorded at room temperature exhibited an asymmetric signal at g∼1.71 and gll∼1.61. The intensity of the signal is observed to be maximal for the spectrum of the glass W4. The quantitative analysis of optical absorption and ESR spectral studies have indicated that there is a maximum reduction of tungsten ions from W6+ state to W5+ state in the glass containing 4.0 mol% of WO3. The IR spectral studies have indicated that there is a increasing degree of disorder in the glass network with increase in the concentration of WO3 upto 4.0 mol%.  相似文献   

20.
Glass samples of compositions xZnO-xCeO2-(30−x)PbO-(70−x)B2O3 with x varying from 2% to 10% mole fraction are prepared by the melt quench technique. The structural and optical analysis of glasses is carried out by XRD, FTIR, density and UV-visible spectroscopic measurement techniques. The FTIR spectral analysis indicates that with the addition of ZnO contents in glass network, structural units of BO3 are transformed into BO4. It has been observed in our previous work that band gap decreases from 2.89 to 2.30 eV for CeO2-PbO-B2O3 glasses with cerium content varying from 0% to 10% [Gurinder Pal Singh, Davinder Paul Singh, Physica B 406(3) (2011) 640-644]. With the incorporation of zinc in CeO2-PbO-B2O3 glasses, the optical band gap energy decreases further from 2.38 to 2.03 eV. This causes more compaction of the borate network, which results in an increase of density (3.39-4.02 g/cm3). Transmittance shows that ZnO in glass samples acts as a reducing agent thathelps to convert Ce4+→Ce3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号