首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
We study the behavior of cooperative multiplayer quantum games [Q. Chen, Y. Wang, J.T. Liu, and K.L. Wang, Phys. Lett. A 327 (2004) 98; A.P. Flitney and L.C.L. Hollenberg, Quantum Inf. Comput. 7 (2007) 111] in the presence of decoherence using different quantum channels such as amplitude damping, depolarizing and phase damping. It is seen that the outcomes of the games for the two damping channels with maximum values of decoherence reduce to same value. However, in comparison to phase damping channel, the payoffs of cooperators are strongly damped under the influence amplitude damping channel for the lower values of decoherence parameter. In the case of depolarizing channel, the game is a no-payoff game irrespective of the degree of entanglement in the initial state for the larger values of decoherence parameter. The decoherence gets the cooperators worse off.  相似文献   

2.
王琼  李际新  曾浩生 《中国物理 B》2009,18(4):1357-1361
This paper investigates the change of entanglement for transmitting an arbitrarily entangled two-qubit pure state via one of three typical kinds of noisy quantum channels: amplitude damping quantum channel, phase damping quantum channel and depolarizing quantum channel. It finds, in all these three cases, that the output distant entanglement (measured by concurrence) reduces proportionately with respect to its initial amount, and the decaying ratio is determined only by the noisy characteristics of quantum channels and independent of the form of initial input state.  相似文献   

3.
We study the dynamics of coherence-induced state ordering under incoherent channels, particularly four specific Markovian channels: amplitude damping channel, phase damping channel, depolarizing channel and bit flit channel for single-qubit states. We show that the amplitude damping channel, phase damping channel, and depolarizing channel do not change the coherence-induced state ordering by l1 norm of coherence, relative entropy of coherence, geometric measure of coherence, and Tsallis relative α-entropies, while the bit flit channel does change for some special cases.  相似文献   

4.
高维量子系统的纠缠态因其诸多的优点而受到广泛的关注。目前,肖兴等人[Eur.Phys.J.D.(2013)67:204]研究了两个V-型三能级原子系统的演化动力学,得到了弱测量方案能保护系统自由纠缠的结论。本文研究了在振幅阻尼噪声中两个全同三能级原子系统束缚纠缠的演化动力学。在振幅阻尼通道中,前置弱测量和后置弱测量反转操作,实现了对系统束缚纠缠的保护。束缚纠缠保持的时间受量子态参数和弱测量强度的影响。相应的物理原因也得到了合理的解释。对于两个非全同三能级原子的情况,此结论依旧成立。另外,弱测量方案并不是对所有类型的束缚纠缠态都适用,有一定的局限性。  相似文献   

5.
We provide an experimental scheme which includes the realizatlon of quantum amplitude damping channel and the optimal two-qubit purification. Moreover, we discuss the purification of arbitrary input qubits and arbitrary N qubits. Our scheme only uses linear optical elements and the proposal may be useful in transmission of photons in fibres. This scheme is feasible in the laboratory with the current experimental technology.  相似文献   

6.
The entropy squeezing of a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel is investigated in detail. Our results show that when coupled to the single-mode field, the atom in appropriate initial states can not only generate obvious entropy squeezing but also keep in the optimal squeezing state,while passing through the amplitude damping channel, the atom can generate entropy squeezing under the control of the weak measurement. Besides, it is proved again that as a measurement method for atomic squeezing, the entropy squeezing is precise and effective. Therefore our work is instructive for experiments in preparing three-level system information resource with ultra-low quantum noise.  相似文献   

7.
贺志  李莉  姚春梅  李艳 《物理学报》2015,64(14):140302-140302
从量子相干性包括l1 norm相干性和量子相对熵相干性的角度建立了判定开放量子系统中非马尔可夫过程的方法, 并给出了相应的判别条件. 作为它们的具体应用, 研究了一个两能级系统分别经历相位衰减通道、 随机幺正通道和振幅耗散通道作用时对应的非马尔可夫过程发生必须满足的条件. 对于三种通道模型, 得到了l1 norm相干性对系统任意态非马尔可夫过程发生的判别条件, 并发现在相位衰减通道和振幅耗散通道中其非马尔可夫过程发生 的条件与用其他方式如信息回流、可分性和量子互熵给出的条件是相同的, 而在随机幺正通道中给出了一个新的且不完全等价于基于信息回流和可分性对应的条件. 至于量子相对熵相干性, 在相位衰减通道中得到了对系统任意态的非马尔可夫过程发生的具体条件, 并发现该条件也等同于基于信息回流、可分性和量子互熵给出的条件. 而在随机幺正通道和振幅耗散通道中得到了系统最大相干态对应的非马尔可夫过程发生的条件.  相似文献   

8.
S. N. Molotkov 《JETP Letters》2001,74(10):517-521
Based on the fundamental Holevo inequality and on the direct calculations, it is argued that the number of commitments required per one bit in a key in a damping channel increases exponentially with channel length. It is shown that the conclusion drawn recently by Duan et al. [4] that the exponential increase in resources for quantum cryptography in a damping channel can be reduced to the polynomial law by generating a through Einstein-Podolsky-Rosen pair is erroneous. Therefore, the results of [4] do not solve the fundamental problem restricting practical application of quantum cryptography at distances larger than the damping length.  相似文献   

9.
Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources.  相似文献   

10.
We study the effect of decoherence on quantum Monty Hall problem under theinfluence of amplitude damping, depolarizing, and dephasing channels. It isshown that under the effect of decoherence, there is a Nash equilibrium ofthe game in case of depolarizing channel for Alice's quantum strategy.Whereas in case of dephasing noise, the game is not influenced by thequantum channel. For amplitude damping channel, Bob's payoffs are foundsymmetrical about a decoherence of 50% and the maximum occurs at this value of decoherence for his classical strategy. However, it is worth-mentioning that in case of depolarizing channel, Bob's classical strategy remains always dominant against any choice of Alice's strategy.  相似文献   

11.
We study the effect of quantum noise on history dependent quantum Parrondo’s games by taking into account different noise channels. Our calculations show that entanglement can play a crucial role in quantum Parrondo’s games. It is seen that for the maximally entangled initial state in the presence of decoherence, the quantum phases strongly influence the payoffs for various sequences of the game. The effect of amplitude damping channel leads to winning payoffs. Whereas the depolarizing and phase damping channels lead to the losing payoffs. In case of amplitude damping channel, the payoffs are enhanced in the presence of decoherence for the sequence AAB. This is because the quantum phases interfere constructively which leads to the quantum enhancement of the payoffs in comparison to the undecohered case. It is also seen that the quantum phase angles damp the payoffs significantly in the presence of decoherence. Furthermore, it is seen that for multiple games of sequence AAB, under the influence of amplitude damping channel, the game still remains a winning game. However, the quantum enhancement reduces in comparison to the single game of sequence AAB because of the destructive interference of phase dependent terms. In case of depolarizing channel, the game becomes a loosing game. It is seen that for the game sequence B the game is loosing one and the behavior of sequences B and BB is similar for amplitude damping and depolarizing channels. In addition, the repeated games of A are only influenced by the amplitude damping channel and the game remains a losing game. Furthermore, it is also seen that for any sequence when played in series, the phase damping channel does not influence the game.  相似文献   

12.
In this paper, we analyze the evolution of quantum coherence in a two-qubit system going through the amplitude damping channel. After they have gone through this channel many times, we analyze the systems with respect to the coherence of their output states. When only one subsystem goes through the channel, frozen coherence occurs if and only if this subsystem is incoherent and an auxiliary condition is satisfied for the other subsystem. When two subsystems go through this quantum channel, quantum coherence can be frozen if and only if the two subsystems are both incoherent. We also investigate the evolution of coherence for maximally incoherent-coherent states and derive an equation for the output states after one or two subsystems have gone through the amplitude damping channel.  相似文献   

13.
Entangled states in high dimensional systems are of great interest due to the extended possibilities they provide in quantum information processing. Recently, Sun et al. [Phys. Rev. A 82, 052323 (2010)] and Kim et al. [Nat. Phys. 8, 117 (2012)] pointed out that weak measurement and quantum weak measurement reversal can actively combat decoherence. We generalize their studies from qubits to qutrits under amplitude damping decoherence. We find that the qutrit-qutrit entanglement can be partially retrieved for certain initial states when only weak measurement reversals are performed. However, we can completely defeat amplitude damping decoherence for any initial states by the combination of prior weak measurements and post optimal weak measurement reversals. The experimental feasibility of our schemes is also discussed.  相似文献   

14.
杨光  廉保旺  聂敏 《物理学报》2015,64(1):10303-010303
在振幅阻尼信道上进行量子隐形传态的过程中, 量子Bell纠缠态将发生退相干, 导致隐形传态质量下降甚至通信失败. 为克服该影响, 本文提出了一种Bell纠缠态补偿方法. 在估计振幅阻尼信道参数的基础上, 将对纠缠态的补偿分为纠缠退相干发生之前的预补偿以及 经历量子振幅阻尼信道之后的匹配补偿两部分. 前者在纠缠源处进行, 后者在两个量子通信 用户处进行, 预补偿及匹配补偿参数与信道特性参数相关. 纠缠补偿完成后, 再进行隐形传态. 理论推导与性能分析结果表明, 相比于不进行纠缠补偿及仅在发生退相干之后进行的纠缠补偿, 本方法能够获得更高的隐形传态保真度, 适当调整补偿参数, 可使保真度接近于1, 对克服纠缠 退相干带来的隐形传态质量下降问题具有一定的意义.  相似文献   

15.
李艳玲  方卯发  肖兴  吴超  侯丽珍 《中国物理 B》2010,19(6):60306-060306
The effects of distributing entanglement through the amplitude damping channel or the phase damping channel on the teleportation of a single-qubit state via the Greenberger--Horne--Zeilinger state and the W state are discussed. It is found that the average fidelity of teleportation depends on the type and rate of the damping in the channel. For the one-qubit affected case, the Greenberger--Horne--Zeilinger state is as robust as the W state, i.e., the same quantum information is preserved through teleportation. For the two-qubit affected case, the W state is more robust when the entanglement is distributed via the amplitude damping channel; if the entanglement is distributed via the phase damping channel, the W state is more robust when the noisy parameter is small while the Greenberger--Horne--Zeilinger state becomes more robust when it is large. For the three-qubit affected case, the Greenberger--Horne--Zeilinger state is more robust than the W state.  相似文献   

16.
We consider an open quantum system subjected to a noise channel under measurement-based feedback control and two prototypical classes of decoherence channels are considered: phase damping and generalized amplitude damping. Based on quantum trajectory theory, we obtain an extended master equation for the dynamics of the reduced system in the presence of feedback control. For a qubit system we analytically solve this master equation and obtain the solution of the state vector dynamics. Then we propose an effective feedback control scheme for preparing an arbitrary quantum pure state. We also study how to protect two nonorthogonal states effectively, and find that projective measurement with unbiased basis is not optimal for this task, while weak measurement with biased basis could realize the best protection of two nonorthogonal states. Furthermore, the inefficiencies in the feedback process are also discussed.  相似文献   

17.
The entanglement-assisted capacity of a generalized amplitude damping channel is investigated by using the properties of partial symmetry and concavity of mutual information. The numerical and analytical results of the entanglement-assisted capacity are obtained under certain conditions. It is shown that the entanglement-assisted capacity depends on the channel parameters representing the ambient temperature and dissipation, and the prior entanglement between sender and receiver can approximately double the classical capacity of the generalized amplitude damping channel.  相似文献   

18.
We present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity. We illustrate our theory numerically for optimized 5-qubit codes, using the standard [5,1,3] code as a benchmark. Our optimized encoding and recovery yields fidelities that are uniformly higher by 1-2 orders of magnitude against random unitary weight-2 errors compared to the [5,1,3] code with standard recovery.  相似文献   

19.
We give an arbitrated signature protocol of classical messages over a collective amplitude damping channel. We analyze its security and prove that it is secure over such a noisy quantum channel even if the arbitrator is compromised. The involvement of the arbitrator is also an appealing advantage in the implementation of a practical quantum distributed communication network.  相似文献   

20.
We study how Unruh effect and quantum noise affect the payoffs of a quantum conflicting interest Bayesian game. Three types of noisy channels, i.e., the amplitude damping channel, the depolarizing channel and the phase damping channel, are employed to model the decoherence processes. We find that Unruh effect weakens the payoffs in the quantum game and the quantum payoffs are lower than the classical payoffs when the acceleration parameter is large enough. However, the variation of the payoffs with the decoherence parameter is not always monotonic. Sometimes more decoherence may lead to higher payoffs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号