首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantum State Preparation and Protection by Measurement-Based Feedback Control Against Decoherence
Abstract:We consider an open quantum system subjected to a noise channel under measurement-based feedback control and two prototypical classes of decoherence channels are considered: phase damping and generalized amplitude damping. Based on quantum trajectory theory, we obtain an extended master equation for the dynamics of the reduced system in the presence of feedback control. For a qubit system we analytically solve this master equation and obtain the solution of the state vector dynamics. Then we propose an effective feedback control scheme for preparing an arbitrary quantum pure state. We also study how to protect two nonorthogonal states effectively, and find that projective measurement with unbiased basis is not optimal for this task, while weak measurement with biased basis could realize the best protection of two nonorthogonal states. Furthermore, the inefficiencies in the feedback process are also discussed.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号