首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this work the magnetic and structural properties of granular Ni(SiO2) films are studied by means of FORCs diagrams and microscopy. Transmission electron microscopy images show that the sample is composed of a fine dispersion of Ni nanoparticles with 3.7 nm in average sizes. Magnetic measurements as function of temperature show that the nanoparticles are superparamagnetic at room temperature and are blocked at 5 K. The FORCs diagrams obtained below the blocking temperature allow us to determine the average size of the nanoparticles and the distribution of sizes in a very good agreement with TEM images.  相似文献   

2.
Mg-doped Ni nanoparticles with the hexagonal close-packed (hcp) and face-centered cubic (fcc) structure have been synthesized by sol-gel method sintered at different temperatures in argon atmosphere. The sintering temperature played an important role in the control of the crystalline phase and the particle size. The pure hcp Mg-doped Ni nanoparticles with average particle size of 6.0 nm were obtained at 320 °C. The results indicated that the transition from the hcp to the fcc phase occurred in the temperature range between 320 °C and 450 °C. Moreover, the VSM results showed that the hcp Mg-doped Ni nanoparticles had unique ferromagnetic and superparamagnetic behavior. The unsaturation even at 5000 Oe is one of the superparamagnetic characteristics due to the small particle size. From the ZFC and FC curves, the blocking temperature TB of the hcp sample (6.0 nm) was estimated to be 10 K. The blocking temperature was related to the size of the magnetic particles and the magnetocrystalline anisotropy constant. By theoretical calculation, the deduced particle size was 6.59 nm for hcp Mg-doped Ni nanoparticles which was in agreement with the results of XRD and TEM.  相似文献   

3.
We report on the magnetic behaviour of films of Fe nanoparticles deposited from the gas phase with sizes in the range 2–3 nm embedded in Ag and Co matrices and Co nanoparticles of the same size embedded in Ag matrices. Magnetometry measurements, using a VSM, of very low volume fraction (1–2%) assemblies of Fe and Co in Ag show perfect superparamagnetism and enable us to confirm that the size distribution of the particles in the matrix is the same as that of the free particles prior to deposition. The hysteresis loops at 2 K, which is below the blocking temperature, show that the particles have a uniaxial anisotropy that is randomly oriented in three dimensions with the Co nanoparticles having a much higher anisotropy than the Fe particles. The soft magnetic behaviour of pure Fe and Co nanoparticle films with no matrix is well described by a random anisotropy model and is consistent with the formation of a correlated super-spin glass (CSSG) characteristic of amorphous materials. The Co nanoparticle films appear to have a lower random anisotropy than the Fe ones in contrast to the behaviour observed for the isolated particles. Films of Fe nanoparticles embedded in Co matrices, whose saturation magnetization exceeds the Slater–Pauling curve, also show magnetic behaviour consistent with a CSSG. At high volume fractions, the films of Fe nanoparticles embedded in Co matrices behave almost identically to films of pure Co nanoparticles.  相似文献   

4.
SrFe12−x(Zr0.5Mg0.5)xO19 nanoparticles and thin films with x=0-2.5 were synthesized by a sol-gel method on thermally oxidized silicon wafer (Si/SiO2). Structural and magnetic characteristics of synthesized samples were studied employing x-rays diffraction (XRD), transmission electron microscopy (TEM), magnetic susceptometer, atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and vibrating sample magnetometer (VSM). TEM micrographs display that the narrow size distribution of ferrite nanoparticles with average particle size of 50 nm were fabricated. Fitting obtained data of effective magnetic susceptibility by Vogel-Fulcher law confirms the existence of strong magnetic interaction among fine particles. XRD patterns and FE-SEM micrographs demonstrated that single phase c-axis hexagonal ferrite films with rather narrow grain size distribution were obtained. AFM micrographs exhibited that the surface roughness increases with an increase in Zr-Mg content. It was found from the VSM graphs that with an increase in substitution contents the coercivity decreases, while the saturation of magnetization increases. The Henkle plots confirms the existence of exchange coupling among nano-grain in ferrite thin films.  相似文献   

5.
The morphology of metal nanoparticles supported on oxide substrates plays an important role in heterogeneous catalysis and in the nucleation of thin films. For platinum evaporated onto SrTiO3 (0 0 1) and vacuum annealed we find an unexpected growth formation of Pt nanoparticles that aggregate into clusters without coalescence. This hierarchical nanoparticle morphology with an enhanced surface-to-volume ratio for Pt is analyzed by grazing incidence small-angle X-ray scattering (GISAXS), X-ray fluorescence (XRF), atomic force microscopy (AFM) and high-resolution scanning electron microscopy (SEM). The nanoparticle constituents of the clusters measure 2-4 nm in size and are nearly contiguously spaced where the average edge-to-edge spacing is less than 1 nm. These particles make up the clusters, which are 10-50 nm in diameter and are spaced on the order of 100 nm apart.  相似文献   

6.
Ni nanoparticles were prepared via thermal decomposition of nickel acetate tetrahydrate in the presence of long-chain amines, which acted as both solvents and reducing agents. By tuning the reaction temperature, Ni nanostructures with either hcp or fcc crystal structure were obtained. In principle, higher temperatures favored the formation of hcp nanoparticles. The employment of additional surfactants such as 1-adamantanecarboxylic acid and trioctylphosphine-oxide facilitated the tuning of the particles’ growth limit. The size of the particles varied between 5 and 120 nm. The magnetic features of fcc-Ni nanoparticles were quite similar to the corresponding ‘bulk’ ones. On the other hand, the hcp-Ni particles showed weak magnetic features, reflected by low magnetization values, the absence of saturation magnetization and by blocking temperatures far below room temperature.  相似文献   

7.
NiO nanoparticle thin films grown on Si substrates were irradiated by 107 MeV Ag8+ ions. The films were characterized by glancing angle X-ray diffraction and atomic force microscopy. Ag ion irradiation was found to influence the shape and size of the nanoparticles. The pristine NiO film consisted of uniform size (∼100 nm along major axis and ∼55 nm along minor axis) elliptical particles, which changed to also of uniform size (∼63 nm) circular shape particles on irradiation at a fluence of 3 × 1013 ions cm−2. Comparison of XRD line width analysis and AFM data revealed that the particles in the pristine films are single crystalline, which turn to polycrystalline on irradiation with 107 MeV Ag ions.  相似文献   

8.
In this work, formation of gold nanoparticles in radio frequency (RF) reactive magnetron co-sputtered Au-SiO2 thin films post annealed at different temperatures in Ar + H2 atmosphere has been investigated. Optical, surface topography, chemical state and crystalline properties of the prepared films were analyzed by using UV-visible spectrophotometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffractometry (XRD) techniques, respectively. Optical absorption spectrum of the Au-SiO2 thin films annealed at 800 °C showed one surface plasmon resonance (SPR) absorption peak located at 520 nm relating to gold nanoparticles. According to XPS analysis, it was found that the gold nanoparticles had a tendency to accumulate on surface of the heat-treated films in the metallic state. AFM images showed that the nanoparticles were uniformly distributed on the film surface with grain size of about 30 nm. Using XRD analysis average crystalline size of the Au particles was estimated to about 20 nm.  相似文献   

9.
ZnO/SiO2 thin films were fabricated on Si substrates by E-beam evaporation with thermal retardation. The as-prepared films were annealed for 2 h every 100 °C in the temperature range 400-800 °C under ambient air. The structural and optical properties were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL). The XRD analysis indicated that all ZnO thin films had a highly preferred orientation with the c-axis perpendicular to the substrate. From AFM images (AFM scan size is 1 μm×1 μm), the RMS roughnesses of the films were 3.82, 5.18, 3.65, 3.40 and 13.2 nm, respectively. PL measurements indicated that UV luminescence at only 374 nm was observed for all samples. The optical quality of the ZnO film was increased by thermal retardation and by using an amorphous SiO2 buffer layer.  相似文献   

10.
Metal films were successfully coated on cenosphere particles using a magnetron sputtering deposition system in which a newly designed sample stage equipped with an ultrasonic vibration generator was used for the tumbling of cenosphere particles. It was found by FE-SEM and AFM results that the films were well compacted and highly uniform in thickness. Due to the difference in sputtering rate, the film thicknesses estimated from FE-SEM characterizations in backscattered mode were <10, 39, 50 and 134 nm for Co, Ni, Cu and Ag films, respectively, under the same sputtering deposition conditions. The RMS values derived from the AFM measurements were 1.94, 4.31, 10.92 and 18.33 nm for Co, Ni, Cu and Ag films, respectively, which can ascribe to the different crystallization behaviors for the four metals. The experiment results indicate that the coating method can be applicable for the fabrication of many other films on cenosphere particles which can be sputter deposited.  相似文献   

11.
Cobalt ferrite nanoparticles were synthesized by the chemical co-precipitation, normal micelles and reverse micelles methods of iron and cobalt chlorides. X-ray diffraction analysis, Fourier Transform Infrared (FTIR) and Vibrating Sample Magnetometer were carried out at room temperature to study the structural and magnetic properties. X-ray patterns revealed the production of a broad single cubic phase with the average particle sizes of ∼12 nm, 5 nm and 8 nm for co-precipitation, normal micelles and reverse micelles methods, respectively. The FTIR measurements between 400 and 4000 cm−1 confirmed the intrinsic cation vibrations of spinel structure for each one of the three methods. Moreover, the average particle sizes were lower than the single domain size (128 nm) and higher than the super-paramagnetic size (2–3 nm) at room temperature. The results revealed that the magnetic properties depend on the particle size and cation distribution, whereas the role of particle size is more significant.  相似文献   

12.
Nickel thin films were deposited on glass substrates at different N2 gas contents using a dc triode sputtering deposition system. Triode configuration was used to deposit nanostructured thin films with preferred orientation at lower gas pressure and at lower substrate temperature compared to the dc diode sputtering system. A gradual evolution in the composition of the films from Ni, Ni(N), to Ni3N was found by X-ray diffraction analysis. The preferred growth orientation of the nanostructured Ni films changed from (1 1 1) to (1 0 0) for 9% N2 at 100 °C. Ni3N films were formed at 23% N2 with a particle size of about 65 nm, while for 0% and 9% of nitrogen, the particles sizes were 60 nm, and 37 nm, respectively, as obtained by atomic force microscopy. Magnetic force microscopy imaging showed that the local magnetic structure changed from disordered stripe domains of about 200 nm for Ni and Ni(N) to a structure without a magnetic contrast, indicating the paramagnetic state of this material, which confirmed the structural transformation from Ni to Ni3N.  相似文献   

13.
We report on the size, structure and magnetic properties of Ni nanoparticles fabricated with a free-jet sputtering nanoparticle source. It is found how the pressure of the inert gas and the diameter of the source nozzle can control the particle size and coercivity in a wide range. Measurements of the specific magnetic moment of Ni nanoparticles are reported. A particular growing regime is found at high pressures over 1.8 mbar observing a further aggregation process that leads to nanoparticle agglomerates with diameters larger than 100 nm with a low dispersion in size.  相似文献   

14.
In this work effect of the carrier fluid, hexane, on the magnetic properties of 4.7 nm sized FePt nanoparticles is investigated. Nanoparticles are synthesized by chemical method. Structural and magnetic characterizations confirmed that samples are monodispersed with disordered face centered cubic (fcc) crystal structure and, magnetically, exhibit two blocking behaviors; the first is at 27 K and second at 110 K. Carrier fluid of particles, hexane, is found to influence the blocking of 7% of the total magnetic moments in the system by freezing at low temperatures resulting in a two blocking phenomena even for nanoparticles that are monodispersed with narrow particle size distribution.  相似文献   

15.
Granular C/Co/C films have been prepared by magnetron sputtering from C and Co onto glass substrates at room temperature and subsequent in situ annealing. It has been found that the structure and magnetic properties of the C/Co/C films depend strongly on the Co layer thickness. Vibrating sample magnetometer measurements indicate that the in-plane coercivities reach maximum in 20 nm Co thickness of both as-deposited and annealed films. The squareness ratio of annealed films was more than 0.8. X-ray diffraction shows that majority Co nanograins are formed as the hexagonal-close-packed (HCP) structure in 20 nm Co thickness with annealing at 400 °C. Scanning probe microscope was used to scan surface morphology and magnetic domain structures. The values of the surface roughness were lower than 0.6 nm in all annealed samples. The average magnetic cluster size was estimated to be about 10 nm in annealed 20 nm Co thickness films.  相似文献   

16.
A magnetic force microscopy is used to examine the domain walls in nickel and cobalt films deposited by argon ion sputtering. Thin nickel films deposited at high substrate temperatures exhibit coexistent Bloch and Neel walls. Films grown at room temperature display alternative Bloch lines with cap switches. These films agglomerate to form grains after annealed at high temperatures. The film composed of larger grains behaves better nucleation implying magnetic domains of closure, while the film composed of smaller grains exhibits more defects implying alternative Bloch lines. We have also observed domain displacements and cap switches, which occur due to precipitation of particles in small grain size films. Stripe domains are observed for film thicknesses larger than 100 nm. They become zigzag cells when an external field of 1.5 T is applied perpendicular to the surface of the films. This experiment indicates that the domain sizes in thin films and the strip widths for thick films both depend on the square-root of the film thickness, which varies from 5 to 45 nm and from 100 to 450 nm, respectively.  相似文献   

17.
Arrays of elliptical particles with aspect ratio 1:3 and short axes 50, 100 and 150 nm were prepared by electron-beam lithography and ion-beam milling of epitaxial (0 0 1)Fe films of thicknesses 10 and 20 nm. The domain state of an individual particle imaged by magnetic force microscopy in zero field after demagnetization was observed to change from being bi-domain or multidomain (MD) to stable single domains (SD) as the lateral size and film thickness were decreased. The critical size for SD formation was found to be close to the actual lateral sizes of 100 nm×300 nm and 150 nm×450 nm for the thicknesses of 20 and 10 nm, respectively. Only in the 10 nm thick ellipses of lateral size 100 nm×300 nm, the magnetization reversal may take place through coherent rotation. For all other investigated samples, the experimental switching field is lower than what would be required for this process.  相似文献   

18.
We study the structural properties of the surface roughness, the surface mound size and the interfacial structure in Ni thin films vacuum-deposited on polyethylene naphthalate (PEN) organic substrates with and without the application of magnetic field and discuss its feasibility of fabricating quantum cross (QC) devices. For Ni/PEN evaporated without the magnetic field, the surface roughness decreases from 1.3 nm to 0.69 nm and the surface mound size increases from 32 nm to 80 nm with the thickness increased to 41 nm. In contrast, for Ni/PEN evaporated in the magnetic field of 360 Oe, the surface roughness tends to slightly decrease from 1.3 nm to 1.1 nm and the surface mound size shows the almost constant value of 28-30 nm with the thickness increased to 35 nm. It can be also confirmed for each sample that there is no diffusion of Ni into the PEN layer, resulting in clear Ni/PEN interface and smooth Ni surface. Therefore, these experimental results indicate that Ni/PEN films can be expected as metal/insulator hybrid materials in QC devices, leading to novel high-density memory devices.  相似文献   

19.
In this paper, we investigate the magnetic properties of aqueous suspensions of extremely bimodal magnetite particles, including micro- (size ∼1450 nm) and nano-(size ∼9 nm) units. It is found that the addition of increasing concentrations of small particles increases the saturation magnetization, the coercive field, and the low-field susceptibility. The results are explained considering that the nano-magnetite used has a moderately wide size distribution, that embraces both the range of superparamagnetism (the lowest size interval) and of finite coercivity, all being single domain. In addition, the formation of a cloud of small particles surrounding the larger ones favors the chain formation by dipolar magnetic aggregation. It is concluded that the admixture of even small amounts of nanoparticles offers an excellent tool for the control of the magnetic properties of magnetite suspensions.  相似文献   

20.
MnxGe1−x thin films were prepared by magnetron sputtering with a substrate temperature of 673 K and subsequently annealed at 873 K. The X-ray diffraction (XRD) measurements showed that all samples had a single Ge cubic structure. No films showed clear magnetic domain structure under a magnetic force microscope (MFM). Atom force microscope (AFM) measurements showed that the films had an uniform particle size distribution, and a columnar growth pattern. X-ray photoelectron spectroscopy (XPS) measurements indicated that the valences of both Mn and Ge atoms increase with the Mn concentration. The resistance decreased with increasing temperature, suggesting that the films were typical semiconductors. Magnetic measurements carried out using a Physical Property Measurement System (PPMS) showed that all samples exhibited ferromagnetism at room temperature. There was a small concentration of Mn11Ge8 in the films, but the ferromagnetism was mainly induced by Mn substitution for Ge site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号