首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Current Applied Physics》2010,10(2):487-497
An infrared diagnosis device provides two-dimensional images and patient-oriented results that can be easily understood by the inspection target by using infrared cameras. However, this device has disadvantages such as large size, high price, and inconvenient maintenance. In this regard, this study has proposed a small diagnosis device for body heat using a single infrared sensor and implementing an infrared detection system using a single infrared sensor and an algorithm that represents thermography using the obtained data on the temperature of the point source. The developed system had a temperature resolution of 0.1 °C and reproducibility of ±0.1 °C. The accuracy was 90.39% at the error bound of ±0 °C and 99.98% at that of ±0.1 °C. To evaluate the proposed algorithm and system, the infrared images of the camera method were compared. To verify the device’s clinical applicability, thermal images with clinical meaning were obtained from a patient who had lesions.  相似文献   

2.
The aim of the present study was to compare infrared thermography and thermal contact sensors for measuring skin temperature during cycling in a moderate environment. Fourteen cyclists performed a 45-min cycling test at 50% of peak power output. Skin temperatures were simultaneously recorded by infrared thermography and thermal contact sensors before and immediately after cycling activity as well as after 10 min cooling-down, representing different skin wetness and blood perfusion states. Additionally, surface temperature during well controlled dry and wet heat exchange (avoiding thermoregulatory responses) using a hot plate system was assessed by infrared thermography and thermal contact sensors. In human trials, the inter-method correlation coefficient was high when measured before cycling (r = 0.92) whereas it was reduced immediately after the cycling (r = 0.82) and after the cooling-down phase (r = 0.59). Immediately after cycling, infrared thermography provided lower temperature values than thermal contact sensors whereas it presented higher temperatures after the cooling-down phase. Comparable results as in human trials were observed for hot plate tests in dry and wet states. Results support the application of infrared thermography for measuring skin temperature in exercise scenarios where perspiration does not form a water film.  相似文献   

3.
Planar extrinsic sulfur-doped silicon detectors for infrared (IR) semiconductor-discharge gap image converters intended for use in high-speed thermography of remote objects have been developed. The detectors were fabricated by high-temperature diffusion of sulfur into silicon wafers from the vapor phase. The dependence of doping efficiency on the sulfur vapor pressure in the course of diffusion was analyzed. The detector fabrication technology was optimized to meet the specific requirements for their operation in the microdischarge devices considered. The detectors were tested in a laboratory setup comprising a blackbody source of IR light, an image converter, and a pulsed CCD camera for recording the converted images. The converter equipped with the detector can provide imaging of objects heated to a temperature, Tmin  200 °C, with a temporal resolution on the order of 10?6 s and spatial resolution of about 5 lines/mm.  相似文献   

4.
We present large-area, edge-emitting, photonic-crystal (PC) distributed-feedback (DFB) quantum cascade lasers (QCLs) emitting at λ∼7.6 μm and operating up to a heat sink temperature of 80 °C. The lasers use the anticrossing of index- and Bragg-guided dispersions of rectangular lattice to control the optical mode in the wafer plane. Single-mode operation with a high signal-to-noise ratio of about 20 dB and narrow beam divergence of 6.2° was obtained. A high peak power of 630 mW at 20 °C and still more than 160 mW at 60 °C was observed. Such a high performance single-mode device is very important to expand the potential applications in the long-wave infrared range.  相似文献   

5.
An investigation on SiC coated carbon–carbon (C/C) composite plates has been undertaken by pulsed thermography. The heat transfer model has been built and the finite element method (FEM) is applied to solve the thermal model. The simulation results show that defects with DA/DP smaller than one can hardly be detected by an infrared camera with the sensitivity of 0.02 °C. Certificated experiments were performed on the built pulsed thermography system. The thermal wave signals have been processed by subtracting background image method (SBIM), pulsed phase thermography (PPT), and temperature–time logarithm fitting method (TtLFM). The limit DA/DP of defects in SiC coated C/C composite plates with the thickness of 6 mm that can be detected by pulsed thermography with the presented signal analysis algorithms has been obtained.  相似文献   

6.
The temperature measurements during the infrared cooking of the semi-cooked cylindrical minced beef product (koefte) were taken by both contact (thermocouples) and non-contact (thermal imaging) techniques. The meat product was semi-cooked till its core temperature reached up to 75 °C by ohmic heating applied at 15.26 V/cm voltage gradient. Then, infrared cooking was applied as a final cooking method at different combinations of heat fluxes (3.7, 5.7 and 8.5 kW/m2), applied distances (10.5, 13.5 and 16.5 cm) and applied durations (4, 8 and 12 min). The average surface temperature increased as the heat flux and the applied duration increased but the applied distance decreased. The temperature distribution of the surface during infrared cooking was determined successfully by non-contact measurements. The temperature homogeneity varied between 0.77 and 0.86. The process condition of 8.5 kW/m2 for 8 min resulted in core temperature greater than 75 °C, which was essential for safe production of ready-to-eat (RTE) meat products. Thermal imaging was much more convenient method for minimizing the point measurement mistakes and determining temperature distribution images more clear and visual.  相似文献   

7.
Fire accidents that carry huge loss with them have increased in the previous two decades than at any time in the history. Hence, there is a need for understanding the safety distances from different fires with different fuels. Fire safety distances are computed for different open pool fires. Diesel, gasoline and hexane are used as fuels for circular pool diameters of 0.5 m, 0.7 m and 1.0 m. A large square pool fire of 4 m × 4 m is also conducted with diesel as a fuel. All the prescribed distances in this study are purely based on the thermal analysis. IR camera is used to get the thermal images of pool fires and there by the irradiance at different locations is computed. The computed irradiance is presented with the threshold heat flux limits for human beings.  相似文献   

8.
The fabrication method and the pyroelectric response of a single element infrared sensor based lead zirconate titanate (PZT) particles and polyvinylidene fluoride P(VDF-TrFE) copolymer composite thick film is reported in this paper. A special thermal insulation structure, including polyimide (PI) thermal insulation layer and thermal insulation tanks, was used in this device. The thermal insulation tanks were fabricated by laser micro-etching technique. Voltage responsivity (RV), noise voltage (Vnoise), noise equivalent power (NEP), and detectivity (D*) of the PZT/P(VDF-TrFE) based infrared sensor are 1.2 × 103 V/W, 1.25 × 106 V Hz1/2, 1.1 × 10−9 W and 1.9 × 108 cm Hz1/2 W−1 at 137.3 Hz modulation frequency, respectively. The thermal time constant of the infrared sensor τT was about 15 ms. The results demonstrate that the composite infrared sensor show a high detectivity at high chopper frequency, which is an essential advantage in infrared detectors and some other devices.  相似文献   

9.
There are few effective methods to detect or prevent the extravasation of injected materials such as chemotherapeutic agents and radiographic contrast materials. To investigate whether a thermographic camera could visualize the superficial vein and extravasation using the temperature gradient produced by the injected materials, an infrared thermographic camera with a high resolution of 0.04 °C was used. At the room temperature of 26 °C, thermal images and the time course of the temperature changes of a paraffin phantom embedded with rubber tubes (diameter 3.2 mm, wall thickness 0.8 mm) were evaluated after the tubes were filled with water at 15 °C or 25 °C. The rubber tubes were embedded at depths of 0 mm, 1.5 mm, and 3.0 mm from the surface of the phantom. Temperature changes were visualized in the areas of the phantom where the tubes were embedded. In general, changes were more clearly detected when greater temperature differences between the phantom and the water and shallower tube locations were employed. The temperature changes of the surface of a volunteer’s arm were also examined after a bolus injection of physiological saline into the dorsal hand vein or the subcutaneous space. The injection of 5 ml room-temperature (26 °C) saline into the dorsal hand vein enabled the visualization of the vein. When 3 ml of room-temperature saline was injected through the vein into the subcutaneous space, extravasation was detected without any visualization of the vein. The subtraction image before and after the injection clearly showed the temperature changes induced by the saline. Thermography may thus be useful as a monitoring system to detect extravasation of the injected materials.  相似文献   

10.
Temperature history and distribution of steel workpiece (X20Cr13) was measured by a high tech infrared camera under ultrasonic assisted dry creep feed up grinding. For this purpose, a special experimental setup was designed and fabricated to vibrate only workpiece along two directions by a high power ultrasonic transducer. In this study, ultrasonic effects with respect to grinding parameters including depth of cut (ae), feed speed (vw), and cutting speed (vs) has been investigated. The results indicate that the ultrasonic vibration has considerable effect on reduction of temperature, depth of thermal damage of workpiece and width of temperature contours. Maximum temperature reduction of 25.91% was reported at condition of vs = 15 m/s, vw = 500 mm/min, ae = 0.4 mm in the presence of ultrasonic vibration.  相似文献   

11.
The application of power ultrasound (PuS) could be used as a novel technology with which to intensify thermal treatments using hot air. Mild thermal treatments have been applied to improve the soft texture of dry-cured ham caused by defective processing. In this regard, the aim of this study was to assess the kinetic intensification linked to the application of airborne PuS in the mild thermal treatment using hot air of dry-cured ham. For this purpose, vacuum packed cylindrical samples (2.52 ± 0.11 cm in diameter and 1.90 ± 0.14 cm in height) of dry-cured ham were heated using hot air at different temperatures (40, 45, 50 °C) and air velocities (1, 2, 3, 4, 6 m/s) with (22.3 kHz, 50 W) and without PuS application. Heat transfer was analyzed by considering that it was entirely controlled by conduction and the apparent thermal diffusivity was identified by fitting the model to the heating kinetics. The obtained results revealed that PuS application sped up the heat transfer, showing an increase in the apparent thermal diffusivity (up to 37%). The improvement in the apparent thermal diffusivity produced by PuS application was greater at high temperatures (50 °C) but negligible at high air velocities (6 m/s). Heating caused an increase in the hardness and elasticity of dry-cured ham, which would correct ham pastiness defects, while the influence of PuS on such textural parameters was negligible.  相似文献   

12.
The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2 MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power = 110 W and supplied thermal power = 450 W). In the same time cavitational activity due to 2 MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2 MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound.  相似文献   

13.
Uncooled infrared detectors (IR) on a polyimide substrate have been demonstrated where amorphous silicon (a-Si) was used as the thermometer material. New concepts in uncooled microbolometers were implemented during the design and fabrication, such as the integration of a germanium long-pass optical filter with the device-level vacuum package and a double layer absorber structure. Polyimide was used for this preliminary work towards vacuum-packaged flexible microbolometers. The detectors were fabricated utilizing a carrier wafer and low adhesion strength release layer to hold the flexible polyimide substrate during fabrication in order to increase the release yield. The IR detectors showed a maximum detectivity of 4.54 × 106 cm Hz1/2/W at a 4 Hz chopper frequency and a minimum noise equivalent power (NEP) of 7.72 × 10−10 W/Hz1/2 at a biasing power of 5.71 pW measured over the infrared wavelength range of 8–14 μm for a 35 μm × 35 μm detector. These values are comparable to other flexible microbolometers with device-level vacuum packaging which are found in literature.  相似文献   

14.
Control of heat dissipation and transmission to the peri-implant area during intra-oral welding is very important to limit potential damage to the surrounding tissue. The aim of this in vitro study was to assess, by means of thermal infrared imaging, the tissue temperature peaks associated with the thermal propagation pathway through the implants, the abutments and the walls of the slot of the scaffold, generated during the welding process, in three different implant systems. An in vitro polyurethane mandible model was prepared with a 7.0 mm v-shape slot. Effects on the maximum temperature by a single welding procedure were studied using different power supplies and abutments. A total of 36 welding procedures were tested on three different implant systems. The lowest peak temperature along the walls of the 7.0 mm v-shaped groove (31.6 ± 2 °C) was assessed in the specimens irrigated with sterile saline solution. The highest peak temperature (42.8 ± 2 °C) was assessed in the samples with a contemporaneous power overflow and premature pincers removal. The results of our study suggest that the procedures used until now appear to be effective to avoid thermal bone injuries. The peak tissue temperature of the in vitro model did not surpass the threshold limits above which tissue injury could occur.  相似文献   

15.
The present work studies how the errors of infrared cameras propagate during the estimation of thermophysical parameters. The errors in the camera were determined experimentally, and varied with both position and temperature. The thermal conductivity and thermal capacity were estimated by comparing the experimental and computational temperature evolution as a gypsum plaster sample was left to cool naturally in the air. For each study, one of the parameters was varied until the simulated temperature curve was adjusted to the experimental curve using the Levenberg–Marquardt Algorithm. We concluded that for the thermal capacity, there is a strong correlation between the error in the camera and the error of the parameter, which was not so clear in the case of the thermal conductivity. Another important conclusion is that the variation of the thermal conductivity presents a better adjustment of the curves even though the error in the estimated parameter was higher, indicating that reasonable results in the minimization process do not necessarily assure a good estimation. As a final conclusion, we stress the importance of using calibrated cameras, since in the extreme cases a mean deviation of 1.46 °C in the camera represented an error of 15% on the thermal capacity and a mean deviation of 0.81 °C in the camera represented an error of 25% on the thermal conductivity.  相似文献   

16.
In this paper, we presented a new pyroelectric detector with back to back silicon cups and micro-bridge structure. The PZT thick film shaped in the front cup was directly deposited with designed pattern by electrophoresis deposition (EPD). Pt/Ti Metal film, which was fabricated by standard photolithography and lift-off technology, was sputtered to connect the top electrode and the bonding pad. The cold isostatic press (CIP) treatment could be applied to improve the pyroelectric properties of PZT thick film. The infrared (IR) properties the CIP-optimized detector were measured. The voltage responsivity (RV) was 4.5 × 102 V/W at 5.3 Hz, the specific detectivity (D*) was greater than 6.34 × 108 cm Hz1/2 W−1 (frequency > 110 Hz), and the thermal time constant was 51 ms, respectively.  相似文献   

17.
Vanadium dioxide has excellent phase transition characteristic. Before or after phase transition, its optical, electrical, magnetic characteristic hangs hugely. It has a wide application prospect in many areas. Now, the light which can make vanadium dioxide come to pass photoinduced phase transition range from soft X-ray to medium infrared light (6.9 μm, 180 meV). However, whether 10.6 μm (117 meV) long wave infrared light can make vanadium dioxide generate photoinduced phase transition has been not studied. In this paper, we researched the response characteristic of vanadium dioxide excited by 10.6 μm infrared light. We prepared the vanadium dioxide and test the changes of vanadium dioxide thin film’s transmittance to 632.8 nm infrared light when the thin film is irradiate by CO2 laser. We also test the resistivity of vanadium dioxide. Excluding the effect of thermal induced phase transition, we find that the transmittance of vanadium dioxide thin film to 632.8 nm light and resistivity both changes when irradiating by 10.6 μm laser. This indicates that 10.6 μm infrared light can make the vanadium dioxide come to pass photoinduced phase transition. The finding makes vanadium has a potential application in recording the long-wave infrared hologram and making infrared detector with high resolution.  相似文献   

18.
This work presents a photogrammetric technique that provides geometric and thermal information about building façades. It uses low cost and portable scale bars, specially designed for thermal imaging, and processing software based on single image rectification. Image rectification corrects the original photo displacement due to the projection and perspective, and radial distortions introduced by the lens of the camera.The technique is tested by comparing laser scanning and thermal data. Seven segments of different orientation and length are selected for the measurement. Accuracy tests show errors between 44 mm and 151 mm. Precision values range between 22 mm and 61 mm for a maximum length of 7259 mm. The accuracy and precision results obtained for the technique open the possibility of extending its use to building inspection tasks.  相似文献   

19.
In recent years multi-spectral device is steadily growing popularity. Multi-spectral antireflection coating effective in visible region for sighting system, laser wavelength for ranging and MWIR region for thermal system can use common objective/receiver optics highly useful for state of art thermal instrumentation. In this paper, design and fabrication of antireflection coating simultaneously effective in visible region (450–650 nm), Eye safe laser wave length (1540 nm) and MWIR region (3.6–4.9 μm) has been reported. Comprehensive search method of design was used and the number of layers in the design was optimised with lowest evaluated merit function studied with respect to various layers. Finally eight-layer design stack was established using hafnium oxide as high index layer and silicon-di-oxide as low index coating material combination. The multilayer stack had been fabricated by using electron beam gun evaporation system in Symphony 9 vacuum coating unit. During layer deposition the substrate was irradiated with End-Hall ion gun. The evaporation was carried out in presence of oxygen and layer thicknesses were measured with crystal monitor. The result achieved for the antireflection coating was 85% average transmission from 450 to 650 nm in visible region, 95% transmission at 1540 nm and 96% average transmission from 3.6 to 4.9 μm in MWIR region.  相似文献   

20.
Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this paper we will discuss the detail MTF measurements of a 1024 × 1024 pixel multi-band quantum well infrared photodetector and 320 × 256 pixel long-wavelength InAs/GaSb superlattice infrared focal plane arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号