首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, two hybrid multimode/single mode fiber FabryPérot (FP) cavities were compared. The cavities fabricated by chemical etching are presented as high temperature and strain sensors. In order to produce this FP cavity a single mode fiber was spliced to a graded index multimode fiber with 62.5 μm core diameter. The FabryPérot cavities were tested as a high temperature sensor in the range between room temperature and 700 °C and as strain sensors. A reversible shift of the interferometric peaks with temperature allowed to estimate a sensitivity of 0.75 ± 0.03 pm/°C and 0.98 ± 0.04 pm/°C for the sensor A and B respectively. For strain measurement sensor A demonstrated a sensitivity of 1.85 ± 0.07 pm/μ? and sensor B showed a sensitivity of 3.14 ± 0.05 pm/μ?. The sensors demonstrated the feasibility of low cost fiber optic sensors for high temperature and strain.  相似文献   

2.
A novel method for simultaneous measurement of refractive index and temperature based on a small core and cladding diameters thinned fiber Mach–Zehnder interferometer (MZI) using singlemode-multimode-thinned-multimode-singlemode (SMTMS) fiber structure is proposed. Experiments indicate that the selected two interference orders have sensitivities of ?16.1936 nm/RIU and 0.0534 nm/°C, and ?23.0473 nm/RIU and 0.0575 nm/°C, respectively, among RI range from 1.3325–1.3720 and temperature range from 22 °C–82 °C. We can thus use the coefficient matrix of these two peaks to simultaneously determine the surrounding refractive index and temperature. The fabrication is easy, safe and cost effective, includes only the fusion splicing, making the device properly attractive for practical sensor applications.  相似文献   

3.
Thermal infrared imagery techniques have been applied in the field of wild land fire management for many years. A kind of infrared system with a tilted porthole conformal to the ellipsoid prow underside the plane nose is presented. This design increases the range of the inner imaging system, reduces air drag and protects against damage. The paper analyzes the aberration characteristic of a tilted ellipsoid porthole, and brings forward an effective corrective solution to make the system achieve a ? 30° to ? 90° field of regard with an instantaneous ± 4° field of view. The ultimate performance indicates that the infrared optical system has met the detection requirements.  相似文献   

4.
We present large-area, edge-emitting, photonic-crystal (PC) distributed-feedback (DFB) quantum cascade lasers (QCLs) emitting at λ∼7.6 μm and operating up to a heat sink temperature of 80 °C. The lasers use the anticrossing of index- and Bragg-guided dispersions of rectangular lattice to control the optical mode in the wafer plane. Single-mode operation with a high signal-to-noise ratio of about 20 dB and narrow beam divergence of 6.2° was obtained. A high peak power of 630 mW at 20 °C and still more than 160 mW at 60 °C was observed. Such a high performance single-mode device is very important to expand the potential applications in the long-wave infrared range.  相似文献   

5.
There are few effective methods to detect or prevent the extravasation of injected materials such as chemotherapeutic agents and radiographic contrast materials. To investigate whether a thermographic camera could visualize the superficial vein and extravasation using the temperature gradient produced by the injected materials, an infrared thermographic camera with a high resolution of 0.04 °C was used. At the room temperature of 26 °C, thermal images and the time course of the temperature changes of a paraffin phantom embedded with rubber tubes (diameter 3.2 mm, wall thickness 0.8 mm) were evaluated after the tubes were filled with water at 15 °C or 25 °C. The rubber tubes were embedded at depths of 0 mm, 1.5 mm, and 3.0 mm from the surface of the phantom. Temperature changes were visualized in the areas of the phantom where the tubes were embedded. In general, changes were more clearly detected when greater temperature differences between the phantom and the water and shallower tube locations were employed. The temperature changes of the surface of a volunteer’s arm were also examined after a bolus injection of physiological saline into the dorsal hand vein or the subcutaneous space. The injection of 5 ml room-temperature (26 °C) saline into the dorsal hand vein enabled the visualization of the vein. When 3 ml of room-temperature saline was injected through the vein into the subcutaneous space, extravasation was detected without any visualization of the vein. The subtraction image before and after the injection clearly showed the temperature changes induced by the saline. Thermography may thus be useful as a monitoring system to detect extravasation of the injected materials.  相似文献   

6.
Experiments on resonator micro-optic gyro (RMOG) with a digital proportional integral (PI) feedback scheme are performed. In this experimental setup, the key rotation sensing element is a polarization maintaining silica waveguide ring resonator (WRR) with a ring length of 7.9 cm and a diameter of 2.5 cm. A good linearity of 0.0015% over a wide range of ± 2 × 104 °/s can be achieved for the RMOG theoretically. The optimal digital PI feedback scheme is adopted in the frequency servo loop to reduce the reciprocal frequency fluctuations due to the WRR resonance frequency and laser frequency drifts. Residual equivalent input fluctuation can be reduced as low as 0.03 °/s/√Hz based on the optimal digital PI feedback scheme, which is close to the shot noise limited spectral density 0.02 °/s/√Hz of the RMOG with the input optical power of 0.2 mW. Relationship between RMOG output signal and angular rate is obtained from ± 0.1 °/s to ± 5 °/s. The standard deviation of the residuals between RMOG output results and linear fit curve is 0.066 °/s. For an integration of the processing circuit, all the processing circuit is implemented by a field programmable gate array (FPGA) instead of instruments. The output of this digitalized RMOG is obtained over a range of ± 550 °/s. The linearity of this digitalized RMOG is 0.0169%.  相似文献   

7.
Zn–Al–NO3–LDH was synthesized using the co-precipitation method at pH 7±0.1 and ratio Zn/Al=4. The heat treatment of LDH was studied by X-ray diffraction (XRD) and thermogravimetric analysis (TGA/DTG) to investigate the stability of the LDH structure. The in situ electron spin resonance (ESR) spectra of fresh LDH from room temperature up to 190 °C were obtained, which are due to the presence of nitrate radicals in LDH interlayer. ESR spectra of sintered LDH below 200 °C (ex situ ESR spectra) were investigated, which are also due to the nitrate radicals. However, at 200 °C and above, spectra were due to the oxygen vacancies of ZnO, which was formed during the thermal treatment of LDH. Thermal diffusivity of LDH as a function of in situ temperatures results in a nonlinear relation, which is due to the changing water content of LDH when temperature increases. However, thermal diffusivity of LDH as a function of sintered temperatures showed a linear relation and the slope of these data demonstrated the dependency between thermal diffusivity and water content of LDH below 200 °C. For temperature above 180 °C, the thermal diffusivity behavior was mainly due to the ZnO phase in LDH.  相似文献   

8.
Cadmium stannate thin films were prepared by spray pyrolysis technique using cadmium acetate and tin(II) chloride precursors at substrate temperatures 450 °C and 500 °C. XRD pattern confirms the formation of orthorhombic (1 1 1) cadmium stannate phase for the film prepared at substrate temperature of 500 °C, whereas, films prepared at 450 °C are amorphous. Film formation does not occur at substrate temperature from 300 to 375 °C. SEM images reveal that the surface of the prepared Cd2SnO4 film is smooth. The average optical transmittance of ∼86% is obtained for the film prepared at substrate temperature of 500 °C with the film thickness of 400 nm. The optical band gap value of the films varies from 2.7 to 2.94 eV. The film prepared at 500 °C shows a minimum resistivity of 35.6 × 10−4 Ω cm.  相似文献   

9.
This study presents the ultrasound assisted pretreatment of sugarcane bagasse (SCB) using metal salt with hydrogen peroxide for bioethanol production. Among the different metal salts used, maximum holocellulose recovery and delignification were achieved with ultrasound assisted titanium dioxide (TiO2) pretreatment (UATP) system. At optimum conditions (1% H2O2, 4 g SCB dosage, 60 min sonication time, 2:100 M ratio of metal salt and H2O2, 75 °C, 50% ultrasound amplitude and 70% ultrasound duty cycle), 94.98 ± 1.11% holocellulose recovery and 78.72 ± 0.86% delignification were observed. The pretreated SCB was subjected to dilute acid hydrolysis using 0.25% H2SO4 and maximum xylose, glucose and arabinose concentration obtained were 10.94 ± 0.35 g/L, 14.86 ± 0.12 g/L and 2.52 ± 0.27 g/L, respectively. The inhibitors production was found to be very less (0.93 ± 0.11 g/L furfural and 0.76 ± 0.62 g/L acetic acid) and the maximum theoretical yield of glucose and hemicellulose conversion attained were 85.8% and 77%, respectively. The fermentation was carried out using Saccharomyces cerevisiae and at the end of 72 h, 0.468 g bioethanol/g holocellulose was achieved. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis of pretreated SCB was made and its morphology was studied using scanning electron microscopy (SEM). The compounds formed during the pretreatment were identified using gas chromatography–mass spectrometry (GC–MS) analysis.  相似文献   

10.
In barium borate (BBO) crystals, sodium and potassium ions, inherited due to the preparation technique, are dominant charge carriers. The conductivity between layers is higher; the conductivity activation energy and the conductivity at 350 °C being equal to 1.01±0.05 eV and (1.3±0.2)×10−8 S/cm, respectively. The conductivity activation energy and the conductivity at 350 °C along the channels are equal to 1.13±0.05 eV and to (4±0.2)×10−9 S/cm, respectively. Relative static permittivity is almost isotropic, and equal to 7.65±0.05. Upon storing of cesium–lithium borate (CLBO) crystals, pre-heating to 600 °C eliminates the influence of surface humidity. At 500 K, the ionic conductivity ranges from 4×10−12 to 2×10−10 S/cm; the conductivity activation energy ranges from 1.01 to 1.17 eV. Relative static permittivity is equal to 7.4±0.3.  相似文献   

11.
Indium tin oxide (ITO) films as the low emissivity coatings of Ni-based alloy at high temperature were studies. ITO films were deposited on the polished surface of alloy K424 by direct current magnetron sputtering. These ITO-coated samples were heat-treated in air at 600–900 °C for 150 h to explore the effect of high temperature environment on the emissivity. The samples were analyzed by X-ray diffraction (XRD), SEM and EDS. The results show that the surface of sample is integrity after heat processing at 700 °C and below it. A small amount of fine crack is observed on the surface of sample heated at 800 °C and Ti oxide appears. There are lots of fine cracks on the sample annealed at 900 °C and a large number of various oxides are detected. The average infrared emissivities at 3–5 μm and 8–14 μm wavebands were tested by an infrared emissivity measurement instrument. The results show the emissivity of the sample after annealed at 600 and 700 °C is still kept at a low value as the sample before annealed. The ITO film can be used as a low emissivity coating of super alloy K424 up to 700 °C.  相似文献   

12.
Control of heat dissipation and transmission to the peri-implant area during intra-oral welding is very important to limit potential damage to the surrounding tissue. The aim of this in vitro study was to assess, by means of thermal infrared imaging, the tissue temperature peaks associated with the thermal propagation pathway through the implants, the abutments and the walls of the slot of the scaffold, generated during the welding process, in three different implant systems. An in vitro polyurethane mandible model was prepared with a 7.0 mm v-shape slot. Effects on the maximum temperature by a single welding procedure were studied using different power supplies and abutments. A total of 36 welding procedures were tested on three different implant systems. The lowest peak temperature along the walls of the 7.0 mm v-shaped groove (31.6 ± 2 °C) was assessed in the specimens irrigated with sterile saline solution. The highest peak temperature (42.8 ± 2 °C) was assessed in the samples with a contemporaneous power overflow and premature pincers removal. The results of our study suggest that the procedures used until now appear to be effective to avoid thermal bone injuries. The peak tissue temperature of the in vitro model did not surpass the threshold limits above which tissue injury could occur.  相似文献   

13.
Transparent ZnO layers were prepared on silica glass substrates by the spin coating-pyrolysis process. As-deposited films were pre-fired at 250 °C for 60 min, at 350 °C for 30 min, and at 500 °C for 10 min, followed by heat treatment at 900 °C for 30 min in air. The ZnO films were analyzed by high resolution X-ray diffraction, field emission-scanning electron microscopy, scanning probe microscopy, and ultraviolet–visible–near infrared spectrophotometry. (0 0 2)-oriented ZnO films were obtained by pre-firing at 350 °C and at 500 °C. All the ZnO films exhibited a high transmittance, above 80%, in the visible region, and showed a sharp fundamental absorption edge at 0.38–0.40 μm. The most highly c-axis-oriented ZnO with a homogeneous surface was observed at a pyrolysis temperature of 350 °C.  相似文献   

14.
We report a temperature sensor based on a Bragg grating written in a benzil dimethyl ketal (BDK) doped multimode (MM) polymer optical fiber (POF) for the first time to our knowledge. The thermal response was further analyzed in view of theory and experiment. In theory, with the order of the reflected mode increasing from 1st to 60th order, for MM silica fiber Bragg grating (FBG) the temperature sensitivity will increase linearly from 16.2 pm/°C to 17.5 pm/°C, while for MM polymer FBG the temperature sensitivity (absolute value) will increase linearly from ?79.5 pm/°C to ?104.4 pm/°C. In addition, temperature sensitivity of MM polymer FBG exhibits almost 1 order larger mode order dependence than that of MM silica FBG. In experiment, the Bragg wavelength shift will decline linearly as the temperature rises, contrary to that of MM silica FBG. The temperature sensitivity of MM polymer FBG is ranged from ?0.097 nm/°C to ?0.111 nm/°C, more than 8 times that of MM silica FBG, showing great potential used as a temperature sensor.  相似文献   

15.
Phase transformations in squaric acid (H2C4O4) have been investigated by thermogravimetry and differential scanning calorimetry with different heating rates β. The mass loss in TG apparently begins at onset temperatures Tdi=245±5 °C (β=5 °C min?1), 262±5 °C (β=10 °C min?1), and 275±5 °C (β=20 °C min?1). A polymorphic phase transition was recognized as a weak endothermic peak in DSC around 101 °C (Tc+). Further heating with β=10 °C min?1 in DSC revealed deviation of the baseline around 310 °C (Ti), and a large unusual exothermic peak around 355 °C (Tp), which are interpreted as an onset and a peak temperature of thermal decomposition, respectively. The activation energy of the thermal decomposition was obtained by employing relevant models. Thermal decomposition was recognized as a carbonization process, resulting in amorphous carbon.  相似文献   

16.
The fabrication method and the pyroelectric response of a single element infrared sensor based lead zirconate titanate (PZT) particles and polyvinylidene fluoride P(VDF-TrFE) copolymer composite thick film is reported in this paper. A special thermal insulation structure, including polyimide (PI) thermal insulation layer and thermal insulation tanks, was used in this device. The thermal insulation tanks were fabricated by laser micro-etching technique. Voltage responsivity (RV), noise voltage (Vnoise), noise equivalent power (NEP), and detectivity (D*) of the PZT/P(VDF-TrFE) based infrared sensor are 1.2 × 103 V/W, 1.25 × 106 V Hz1/2, 1.1 × 10−9 W and 1.9 × 108 cm Hz1/2 W−1 at 137.3 Hz modulation frequency, respectively. The thermal time constant of the infrared sensor τT was about 15 ms. The results demonstrate that the composite infrared sensor show a high detectivity at high chopper frequency, which is an essential advantage in infrared detectors and some other devices.  相似文献   

17.
The temperature measurements during the infrared cooking of the semi-cooked cylindrical minced beef product (koefte) were taken by both contact (thermocouples) and non-contact (thermal imaging) techniques. The meat product was semi-cooked till its core temperature reached up to 75 °C by ohmic heating applied at 15.26 V/cm voltage gradient. Then, infrared cooking was applied as a final cooking method at different combinations of heat fluxes (3.7, 5.7 and 8.5 kW/m2), applied distances (10.5, 13.5 and 16.5 cm) and applied durations (4, 8 and 12 min). The average surface temperature increased as the heat flux and the applied duration increased but the applied distance decreased. The temperature distribution of the surface during infrared cooking was determined successfully by non-contact measurements. The temperature homogeneity varied between 0.77 and 0.86. The process condition of 8.5 kW/m2 for 8 min resulted in core temperature greater than 75 °C, which was essential for safe production of ready-to-eat (RTE) meat products. Thermal imaging was much more convenient method for minimizing the point measurement mistakes and determining temperature distribution images more clear and visual.  相似文献   

18.
Hydrothermally synthesised Sr hexaferrite (HT-SrM) powder with a distinct plate-like shape and conventional Sr hexaferrite (c-SrM) powder were used to screen print SrM thick films on alumina substrates. In the case of the HT-SrM thick films, a very strong perpendicular magnetic anisotropy has been observed with remanence values of up to 42±2 J/T kg for the perpendicular direction and 15±1 J/T kg for the in-plane direction, and with coercivities of around 159±8 kA/m for both directions when fired at 1300°C. When fired at 1150°C, the remanences were 49±2 and 27±2 J/T kg for the two directions with a higher coercivity of 247±8 kA/m for both directions. The SEM micrographs showed that the platelet grains in the printed films lay with their flat surfaces on the substrate and XRD results revealed that the c-axis of the grains oriented perpendicularly to the film surface. The (0 0 8) plane, which is, for a random oriented sample, a very weak peak, appeared as the strongest in the XRD pattern for the films. EDX and XRD studies indicated significant reaction at the interfaces between the film and the substrate when the sintering temperature was raised to 1350°C.For the SrM thick films obtained from planetary milled ultrafine Sr hexaferrite and conventional Sr hexaferrite powder, a slight in-plane anisotropy could be observed with a coercivity of 318±8 kA/m.  相似文献   

19.
110 °C range athermalization is significant but difficult for designing infrared imaging systems. Our wavefront coding athermalized infrared imaging system adopts an optical phase mask with less manufacturing errors and a decoding method based on shrinkage function. The qualitative experiments prove that our wavefront coding athermalized infrared imaging system has three prominent merits: (1) working well over a temperature range of 110 °C; (2) extending the focal depth up to 15.2 times; (3) achieving a decoded image being approximate to its corresponding in-focus infrared image, with a mean structural similarity index (MSSIM) value greater than 0.85.  相似文献   

20.
《Physics letters. A》2020,384(4):126097
In order to develop high efficiency solar cell device by replacing conventional hazardous CdS window layer by environmental friendly Zn-based buffer layer, ZnSe thin films of thickness 100 nm were grown on glass and ITO substrates employing electron beam evaporation technique followed by air and vacuum annealing at temperature 100 °C, 200 °C and 300 °C. As-grown and annealed films were subjected to characterization tools like XRD, UV-Vis spectrophotometer, SEM, EDS and source meter. Structural results reveal the amorphous phase, SEM images indicate uniform deposition without pin holes and EDS patterns confirm the deposition. Transmittance is observed to be high in visible region and band gap is found to change with temperature of the treatment and I-V measurements demonstrate ohmic nature. On the basis of optimized results, the films annealed at 200 °C in vacuum may be used as buffer layer to develop high efficiency Cd-based and CIGS thin film solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号