首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
InP-based InGaAsP photodetectors targeting on 1.06 μm wavelength detection have been grown by gas source molecular beam epitaxy and demonstrated. For the detector with 200 μm mesa diameter, the dark current at 10 mV reverse bias and R0A are 8.89 pA (2.2 × 10−8 A/cm2) and 3.9 × 105 Ω cm2 at room temperature. The responsivity and detectivity of the InGaAsP detector are 0.30 A/W and 1.45 × 1012 cm Hz1/2 W−1 at 1.06 μm wavelength. Comparing to the reference In0.53Ga0.47As detector, the dark current of this InGaAsP detector is about 570 times lower and the detectivity is more than ten times higher, which agrees well with the theoretical estimation.  相似文献   

2.
We report on heterostructure bandgap engineered midwave infrared photodetectors based on type-II InAs/GaSb strained layer superlattices with high operating temperatures. Bandgap and bandoffset tunability of antimonide based systems have been used to realize photodiodes and photoconductors. A unipolar barrier photodiode, pBiBn, and an interband cascade photovoltaic detector have been demonstrated with a 100% cutoff wavelength of 5 μm at 77 K. The pBiBn detector demonstrated operation up to room temperature and the cascade detector up to 420 K. A dark current density of 1.6 × 10−7 A/cm2 and 3.6 × 10−7 A/cm−2 was measured for the pBiBn and interband cascade detector, respectively, at 80 K. A responsivity of 1.3 A/W and 0.17 A/W was observed at −30 mV and −5 mV of applied bias for pBiBn and cascade detector, respectively, at 77 K. The experimental results have been explained by correlating them with the operation of the devices.  相似文献   

3.
The electrical characteristics of photodiode structures on the base of InAS/InAsSbP heterojunctions, that have a high room temperature differential resistance and operate in the mid-infrared region over the wavelength range 1.6–3.5 μm are reported. At the difference frequency, CV measurements are showed that at small biases and temperatures which are higher than 160 K, the measured capacity is increase with decreasing frequency. It is possible to explain by presence the deep recombination centers in space charge region of the investigated structures. Have been studied the avalanche multiplication of the photocurrent and the temperature dependence of the monochromatic power–voltage sensitivity in the temperature range 77–300 K.  相似文献   

4.
The Thermally Stimulated Luminescence (TSL) at room temperature X-ray irradiated natural biotite in form of micro-grain powder was studied under various heating rates. TSL peaks showed at temperatures 393 K, 399.6 K, 403.5 K, 404.5 K, 406.9 K at their respective heating rates 2 K/s, 4 K/s, 6 K/s, 8 K/s and 10 K/s. The effect of thermal quenching on thermoluminescence parameters such as peak maximum temperature, peak area, FWHM, geometrical symmetry factor, the activation energy were investigated. From the symmetry factor it is clear that the TL glow curve follows the first order kinetics for the lowest heating rate, but as the heating rate increases it defers from the first order. The activation energies for each heating rates were calculated by using Chen peak shape methods for general order kinetics and found to be decreased for higher heating rates. When activation energy is calculated by variable heating rate method it is observed that the method overestimated the value of activation energy and pre-exponential frequency factor significantly due to thermal quenching.  相似文献   

5.
We present a study of the surface stoichiometry and contamination of La0.7Sr0.3MnO3 thin films following exposure to air and subsequent in vacuo preparation. Samples were studied using both soft X-ray synchrotron photoemission ( = 150 to 350 eV) and traditional Mg-Kα XPS ( = 1253.6 eV) whilst annealing incrementally to ≈ 510°C in low pressures of O2. In all cases, a Mn depleted and Sr rich surface oxide layer is observed, it is of reduced crystalline quality and is charge depleted. This surface layer is weakly affected by subsequent annealing, and is partially reversed by annealing in higher O2 pressure. Surface carbon contamination is incrementally removed by annealing at increased temperatures, and at 270 °C, it is reduced to ≈ 0.4% of the topmost unit cell. The modification of the surface stoichiometry and electronic properties is consistent with the reported loss of magnetic properties in thin LSMO films.  相似文献   

6.
We have demonstrated 384 × 288 pixels mid-wavelength infrared focal plane arrays (FPA) using type II InAs/GaSb superlattice (T2SL) photodetectors with pitch of 25 μm. Two p-i-n T2SL samples were grown by molecular beam epitaxy with both GaAs-like and InSb-like interface. The diode chips were realized by pixel isolation with both dry etching and wet etching method, and passivation with SiNx layer. The device one with 50% cutoff wavelength of 4.1 μm shows NETD  18 mK from 77 K to 100 K. The NETD of the other device with 50% cutoff wavelength at 5.6 μm is 10 mK at 77 K. Finally, the T2SL FPA shows high quality imaging capability at the temperature ranging from 80 K to 100 K which demonstrates the devices’ good temperature performance.  相似文献   

7.
Metal–insulator–semiconductor structures based on n-Hg1−xCdxTe (x = 0.19–0.25) were grown by molecular-beam epitaxy on the GaAs (0 1 3) substrates. Near-surface graded-gap layers with high CdTe content were formed on both sides of the epitaxial HgCdTe. Admittance of these structures was studied experimentally in a wide temperature range (8–150) K. It is shown that an increase in the composition of the working layer and a decrease in temperature lead to a decrease in the frequency of transition to high-frequency behavior of the capacitance–voltage characteristics. The differential resistance of space charge region in the strong inversion increases with the composition of the working layer and for x = 0.22 and 0.25, the differential resistance is limited by the Shockley-Read generation. The values of the differential resistance of space charge region at different frequencies and temperatures were found.  相似文献   

8.
A comparison between the temperatures within imploding acoustic cavitation bubbles and the extent of sonoluminescence (SL) quenching by C1–C5 aliphatic alcohols in 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM][EtSO4], a well known imidazolium based room temperature ionic liquid (RTIL)), has been made at an ultrasound frequency of 213 kHz. The temperatures obtained ranged from 3500 ± 200 K, in neat [EMIM][EtSO4], to about 3200 ± 200 K in RTIL-alcohol containing solutions. It was also found that the SL intensity decreased with increasing concentration (up to 1 M) of the alcohols to a greater extent compared with the relative changes to the bubble temperatures. Both the extent of the reduction in the bubble temperatures and the SL quenching were much smaller than those obtained in comparable aqueous solutions containing aliphatic alcohols. Possible reasons for the differences in the observed trends between water/alcohol and [EMIM][EtSO4]/alcohol systems under sonication at 213 kHz are discussed.  相似文献   

9.
We present a cascaded continuous-wave singly resonant optical parametric oscillator (SRO) delivering idler output in mid-IR and terahertz frequency range. The SRO was pumped by an ytterbium-doped fiber laser with 27 W linear polarization pump powers, and based on periodically poled MgO:LiNbO3 crystal (PPMgLN) in two-mirror linear cavity. The PPMgLN is 50 mm long with 29.5 μm period. The idler power output at 3811 nm was obtained 2.6 W. The additional spectral components that have been attributed to cascaded optical parametric processes are described at increasing pump levels. Besides the initial signal component at about 1476.8 nm, further generated wavelengths with frequency shifts about 47 cm?1, 94 cm?1 and 104 cm?1 were observed. It was speculated that the idler waves lie in the terahertz (THz) domain from the observed results.  相似文献   

10.
In this paper, we present an InAs/GaSb type-II superlattice (SL) with the M-structure for the fabrication of a long-wavelength (10 μm range) infrared (LWIR) focal plane arrays (FPA), which are grown by molecular beam epitaxy (MBE). The M-structure is named for the shape of the band alignment while the AlSb layer is inserted into the GaSb layer of InAs/GaSb SL. A 320 × 256 LWIR FPA has been fabricated with low surface leakage and high R0A product of FPA pixels by using anodic sulfide and SiO2 physical passivation. Experiment results show that the devices passivated with anodic sulfide obviously have higher R0A than the un-sulphurized one. The 50% cutoff wavelength of the LWIR FPA is 9.1 μm, and the R0A is 224 Ω cm2 with the average detectivity of 2.3 × 1010 cm Hz1/2 W−1.  相似文献   

11.
We have studied the formation of a Bi-induced (2 × 2) reconstruction on the InAs(111)B surface. In connection to the development of the (2 × 2) reconstruction, a two dimensional charge accumulation layer located at the bottom of the InAs conduction band appears as seen through a photoemission structure at the Fermi level. Not well ordered Bi layers do not induce a charge accumulation. The Bi-induced reconstruction reduces the polarization of the pristine surface and changes the initial charge distribution. InAsBi alloying occurs below the surface where Bi acts as charge donor leading to the charge accumulation layer.  相似文献   

12.
The present study reports the influence of pre-carbonization on the properties of KOH-activated coal tar pitch (CTP). The change of crystallinity and pore structure of pre-carbonized CTPs as well as their activated carbons (ACs) as function of pre-carbonization temperature are investigated. The crystallinity of pre-carbonized CTPs increases with increasing the carbonization temperature up to 600 °C, but a disorder occurs during the carbonization around 700 °C and an order happens gradually with increasing the carbonization temperatures in range of 800–1000 °C. The CTPs pre-carbonized at high temperatures are more difficult to be activated with KOH than those pre-carbonized at low temperatures due to the increase of micro-crystalline size and the decrease of surface functional groups. The micro-pores and meso-pores are well developed at around 1.0 nm and 2.4 nm, respectively, as the ACs are pre-carbonized at temperatures of 500–600 °C, exhibiting high specific capacitances as electrode materials for electric double layer capacitor (EDLC). Although the specific surface area (SSA) and pore volume of ACs pre-carbonized at temperatures of 900–1000 °C are extraordinary low (non-porous) as compared to those of AC pre-carbonized at 600 °C, their specific capacitances are comparable to each other. The large specific capacitances with low SSA ACs can be attributed to the structural change resulting from the electrochemical activation during the 1st charge above 2.0 V.  相似文献   

13.
In this study, a hybrid ultraviolet (UV) photo detector comprising of hydrothermally grown highly oriented Zinc Oxide nanorod arrays (ZnO NRAs) and Poly(3-hexylthiophene-2,5-diyl) (P3HT) as an active layer was fabricated and characterized. These hybrid photo detectors demonstrated a high rectification ratio (∼117) and responsivity of 10.7 A/W at −2  V under incident light of wavelength 325 nm. Further to investigate the effect of surface plasmon property of metal nanoparticles on the performance of hybrid UV photo detectors, ZnO NRAs were capped with dc sputtered gold (Au) metal nanolayer (∼5 nm) at the ZnO-P3HT interface, prior to coating P3HT layer on top of it. It was found out that upon Au coating the absorption of the ZnO was enhanced partly in the ultraviolet and visible region. In consequence the rectification ratio and responsivity of the hybrid photo detector was enhanced drastically from 117 to 1167 and 10.7 to 17.7 A/W respectively. Interestingly the reduction in dark current was observed on Au coating and it was revealed that Au nanoparticles play a key role in enhancing the performance of the hybrid photo detectors.  相似文献   

14.
Due to its tuneable narrow band gap, HgCdTe (MCT) is a material of choice for high complexity IR focal plane arrays (FPAs). Being a strategic defence technology, MCT detector developments is totally mastered at every stage of fabrication at LETI and Sofradir, from the lattice matched CZT substrate growth, the active layer MCT growth, to PV technology, silicon ROIC design and flip chip hybridization. Within the last few years, MCT devices have considerably evolved in terms of device complexity, performances, and field of action. n/p standard technology has been developed in all spectral ranges, from VLWIR (20 μm) down SWIR (1.7 μm). MCT photodiode sensibility goes even lower, down to visible and even UV with a constant quantum efficiency. Moreover, MCT material provides us with high and noiseless avalanche gains inside the photodiode itself, which we are now fully able to use for the optimization of FPA performances. Besides, p/n diode structure is a new emerging process which improves detector performances by several orders of magnitude in terms of dark current, by comparison with the n/p historical structure. This technology has been successfully demonstrated from VLWIR (15 μm cut off) down to the SWIR range (2 μm cut off) where ultra low dark currents are recorded at low temperatures (0.4 e/s). In the same time, first dual band FPAs are delivered, which are expected to be the 3rd generation of IR detectors. At last, considerable efforts are made in order to increase the operational temperature, going from 100 K to 150 K for MWIR FPAs at constant performances, optimizing all technological steps, especially growth issues. Going at even higher operating temperatures (HOTs) is also under active study.  相似文献   

15.
Photoluminescence (PL) of photochromic pHEMA-TiO2 gels-based hybrids was studied by means of time- and energy-resolved spectroscopy at temperatures between 300 K and 10 K. The PL band at 485 nm is assigned to S0←T1 transition of methoxyphenol (organic molecule added to the commercial monomer hydroxyethyl methacrylate, HEMA and used as an inhibitor of spontaneous polymerisation) in the polymer environment, while the PL band at 600 nm is assigned to the self-trapped exciton onto octahedral TiO6 site of the inorganic component. The mechanisms of the excited states population are discussed. In particular it is shown that both singlet-triplet energy transfer in methoxyphenol and methoxyphenol–TiO2 charge transfer are strongly affected by the material composition and temperature. The hypothesis about the photoexcited holes annihilation with the trapped electrons is confirmed to be one of main mechanisms limiting the Ti3+ centres concentration.  相似文献   

16.
This work strived to model the effect of surface oxidization and nitridation on the normal spectral emissivity of Ti–6Al–4V alloys at a temperature range of 800–1100 K and a wavelength of 1.5 μm. In experiments, the detector was as close to perpendicular to the surface of the specimens as possible so that only the normal spectral emissivity was measured. Two thermocouples were symmetrically welded near the measuring area for accurate measuring and monitoring of the temperature at the surface of the specimen. The specimens were heated for 6 h at a certain temperature. During this period, the normal spectral emissivity values were measured once every 1 min during the initial 180 min, and once every 2 min thereafter. The measurements were made at certain temperatures from 800 to 1100 K in intervals of 20 K. One strong oscillation in the normal spectral emissivity was observed at each temperature. The oscillations were formed by the interference between the radiation stemming from the oxidization and nitridation layer on the specimen surface and radiation from the substrate. The uncertainty in the normal spectral emissivity caused only by the surface oxidization and nitridation was found to be approximately 9.5–22.8%, and the corresponding uncertainty in the temperature generated only by the surface oxidization and nitridation was approximately 6.9–15.5 K. The model can reproduce well the normal spectral emissivity, including the strong oscillation that occurred during the initial heating period.  相似文献   

17.
Polaron theory is often used for the study of electrons and holes mobility in semiconductors when longitudinal optical (LO) phonons are generated upon the charge carriers moving. The polaron theory was applied to explain long-wavelength absorptions observed nearby Soret band in the electronic spectra of assemblies of mono-protonated meso-tetraphenylporphine dimer (TPP2H+) that are interpreted as LO-phonons originated due to proton movement. The energy of hole polaron is found to be 1.50 eV at 77 K. Energy of Franck–Condon transitions of LO-phonons generated by hole polaron moving through water confined in the assemblies with distortions of O–H bonds is 0.2653 eV (2138 cm−1). A broad band around 2127 cm1 corresponding the same energy of O–H bonds vibrations is observed in IR spectra of the assemblies consisting of water and mainly of TPP2H+ species in the solid state indicating the presence of similar distortions of the hydrogen bonds. The radius of protonic sphere of 0.202 Å, which was estimated as a polaron quasiparticle moving through the confined water at 77 K, is found in agreement with earlier evaluated one of 0.265 Å that was obtained for proton diffusion at 298 K in similar assemblies.  相似文献   

18.
At low temperatures the TmFeO3 orthoferrite shows a strong spontaneous magnetostriction generated by rare earth Tm atoms. This effect essentially depends on the temperature and orientation of the weak ferromagnetism vector of the Fe sublattice and reaches largest values for the directions [1 0 0] and [0 0 1]. The spin reorientation process in TmFeO3 marks itself mainly in the change of the signs of the linear thermal expansion coefficients in the directions mentioned above. Some additional singularities of thermal dependencies of expansion coefficients are observed below 20 K, which may be due to a magnetic compensation effect in the investigated orthoferrite.  相似文献   

19.
We report the growth by Molecular Beam Epitaxy (MBE), fabrication and characterization of silicon doped 20 layer InAs dot in a well quantum dot infrared photo detector (DWELL-QDIP) device structures. Two structures with InAs dots of vertical heights of 50 Å and 40 Å were compared. A 2–8 μm band normal incidence photo response of the detector with polarization and bias dependence was obtained at 77 K. The specific peak detectivity D1 be 0.8 × 109 Jones for one of the detectors.  相似文献   

20.
Future astronomical instruments call for large format and high sensitivity far infrared focal-plane arrays to meet their science objectives. Arrays as large as 128 × 128 with sensitivities equal to or better than 10−18 W/√Hz are set as targets for the far IR instruments to be developed within the next 10 years. These seemingly modest goals present a not-so-modest quantum leap for far IR detector technology whose progress is hampered by a number of complexities; chief among them the development of low noise readouts operating at deep cryogenic temperatures and a viable hybridization scheme suitable for far IR detectors. In an effort to incrementally develop large-format photoconductor arrays, we have fabricated a 2 × 16 Ge:Sb array using the SBRC190 readout – a cryogenic 1 × 32 CTIA readout multiplexer initially developed for SOFIA’s AIRES instrument. In this paper we report the results of the extensive parametric tests performed on this array showing an impressive noise performance of 2.2 × 10−18 W/√Hz and a DQE of 0.41 despite some design limitations. With such an encouraging performance, this prototype array will serve as a platform for our future developmental effort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号