首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The analytic mean-field approach (AMFP) was applied to study the thermodynamic properties of Zirconium (Zr). The analytic expressions for the Helmholtz free energy, internal energy and equation of state have been derived. The formalism for the case of the Morse potential is used in this work. The four potential parameters are determined by fitting the molar volume of the three phases of Zr. The calculated molar volume of α, β and ω Zr are in fairly good agreement with the available experimental data. The results presented in this paper verify that the AMFP is a useful approach to study the thermodynamic properties of Zr. Furthermore, we predict the variation of the relationship of free energy and internal energy versus the molar volume at various temperatures and the dependence of the bulk modulus, the thermal expansion coefficient and the heat capacity on temperature at zero pressure of α, β and ω Zr.   相似文献   

2.
陈永涛  唐小军  李庆忠 《中国物理 B》2010,19(5):56402-056402
This paper provides an investigation of the phase transition and spalling characteristic induced during shock loading and unloading in the pure iron and the FeMnNi alloy. The impact for the pure iron is symmetric and with same-thickness for both the flyer and the target plate. It is found that an abnormal multiple spalling happens in the pure iron sample as the pressure exceeds the $\alpha -\varepsilon $ transition threshold of 13 GPa. In the symmetric and same-thickness impact and reverse impact experiments of the FeMnNi alloy, two abnormal tension regions occur when the pressure exceeds the $\alpha -\varepsilon $ transition threshold of 6.3~GPa, and the reverse phase transition $\varepsilon -\alpha $ begins below 4.2~GP. The experimental process is simulated successfully from the non-equilibrium mixture phase and Boettger's model. Such abnormal spalling phenomena are believed to relate to the shocked $\alpha -\varepsilon $ phase transition. The possible reasons for the abnormal multiple spalling, which occurs during the symmetric and same-thickness impact experiments of pure iron and FeMnNi alloy, are discussed.  相似文献   

3.
The chaotic behaviours of the Rydberg hydrogen atom near a metal surface are presented. A numerical comparison of Poincare surfaces of section with recurrence spectra for a few selected scaled energies indicates the correspondence between classical motion and quantum properties of an excited electron. Both results demonstrate that the scaled energy dominates sensitively the dynamical properties of system. There exists a critical scaled energy εc, for ε 〈 εc, the system is near-integrable, and as the decrease of ε the spectrum is gradually rendered regular and finally turns into a pure Coulomb field situation. On the contrary, if ε 〉 εc, with the increase of ε, the system tends to be non-integrable, the ergodic motion in phase space presages that chaotic motion appears, and more and more electrons are adsorbed on the metal surface, thus the spectrum becomes gradually simple.  相似文献   

4.
张伟  程艳  朱俊  陈向荣 《中国物理 B》2009,18(3):1207-1213
Structural, thermodynamic and electronic properties of zinc-blende AlN under pressure are investigated by first-principles calculations based on the plane-wave basis set. Through the analysis of enthalpy variation of AlN in the zinc-blende (ZB) and the rock-salt (RS) structures with pressure, we find the phase transition of AlN from ZB to RS structure occurs at 6.7 GPa. By using the quasi-harmonic Debye model, we obtain the heat capacity CV, Debye temperature ΘD, Grüneisen parameter γ and thermal expansion coefficient α. The electronic properties including fundamental energy gaps and hydrostatic deformation potentials are investigated and the dependence of energy gaps on pressure is analysed.  相似文献   

5.
艾琼  付志坚  程艳  陈向荣 《中国物理 B》2008,17(7):2639-2645
This paper investigates the electronic structure and thermodynamic properties of LiBC in the hexagonal structure by using the generalized gradient approximation (GGA) and local density approximation correction scheme in the frame of density functional theory. The geometric structure of LiBC under zero pressure, and the dependences of the normalized lattice parameters a/ao and c/co, the ratio e/a, the normalized primitive volume V/Vo on pressure are given. The thermodynamic quantity (including the heat capacity Cv, Debye temperature 6~D, thermal expansion a and Grfineisen parameter -y) dependences on temperature and pressure are obtained through the GGA method and the quasi-harmonic Debye model. The band structures and density of state of LiBC under different pressures have also been analysed.  相似文献   

6.
王艳  曹仟慧  胡翠娥  曾召益 《物理学报》2019,68(8):86401-086401
采用第一性原理计算对Ce_(0.8)La_(0.1)Th_(0.1)在高压下fcc-bct的结构相变、弹性性质及热力学性质进行了研究讨论.通过对计算结果的分析,发现了合金在压力下的相变规律,压强升高到31.6 GPa附近时fcc相开始向bct相转变,到34.9 GPa时bct相趋于稳定.对弹性模量的计算结果从另一角度反映了结构相变的信息.最后,利用准谐德拜模型对两种结构的高温高压热力学性质进行了理论预测.  相似文献   

7.
In the present work,we predict the α decay half-lives of unknown even-even nuclei ~(296-308)120 within the two-potential approach,whose α decay energy Qa is calculated using WS3+mass model.To reduce the deviations between the predictions and experimental data due to nuclear shell effect,the analytic formula of α decay hindrance factor is introduced to the two-potential approach,whose parameters had been extracted from even-even nuclei in the region of 82 Z 126 and 152 N 184 in our previous work [Deng et al.,Chin.Phys.C 42(2018) 044102].In addition,for comparing,we use a type of α decay general formula Universal Decay Law(UDL) and a semi-empirical formula in the superheavy nucleus(SEMFLS) to calculate the half-lives of even-even nuclei ~(296-308)120.The results indicate that our predicted values and the calculated values of the above two empirical formulas are mutually confirmed.Meanwhile,we systematically study α decay chains of ~(296-308)120 and predict the decay modes for superheavy nuclei to help to identify new superheavy isotopes.  相似文献   

8.
We present a detailed derivation of the analytic expressions for the equation of state (EOS) and internal energy of Morse model solids based on an analytic mean field potential (AMFP) method. The formalism is applied to cubic boron nitride (c-BN). One set of potential parameters are determined by fitting the experimental P-V-T data of c-BN up to 160 GPa at 295 K and 80 GPa in the range 500–900 K. Various physical quantities including the isothermals, thermal expansion, isochoric heat capacity, Helmholtz free energy and internal energy are calculated and analyzed. The theoretical results are consistent with the available experimental data and those calculated by others. These results presented in this paper verify that the AMFP method is a useful approach to consider the anharmonic effect at high temperature. Numerous reasonable predictions and the change trend of the properties for c-BN at extreme conditions have been given.  相似文献   

9.
In this paper, the electronic states of the ground states and dissociation limits of BC and BC- are correctly determined based on group theory and atomic and molecular reaction statics. The equilibrium geometries, harmonic frequencies and dissociation energies of the ground state of BC and BC- are calculated by using density function theory and quadratic CI method including single and double substitutions. The analytical potential energy functions of these states have been fitted with Murrell-Sorbie potential energy function from our ab initio calculation results. The spectroscopic data (αe, ωe and ωeχe) of each state is calculated via the relation between analytical potential energy function and spectroscopic data. All the calculations are in good agreement with the experimental data.  相似文献   

10.
张然  何军  彭增辉  宣丽 《中国物理 B》2009,18(7):2885-2892
This paper investigates the average dielectric permittivity (\overline ε ) in the Maier--Meier theory for calculating the dielectric anisotropy (Δε) of nematic liquid crystals. For the reason that \overline ε of nematics has the same expression as the dielectric permittivity of the isotropic state, the Onsager equation for isotropic dielectric was used to calculate it. The computed \overline ε shows reasonable agreement with the results of the numerical methods used in the literature. Molecular parameters, such as the polarizability and its anisotropy, the dipole moment and its angle with the molecular long axis, were taken from semi-empirical quantum chemistry (MOCPAC/AM1) modeling. The calculated values of Δε according to the Maier--Meier equation are in good agreement with the experimental results for the investigated compounds having different core structures and polar substituents.  相似文献   

11.
常景  陈向荣  张伟  朱俊 《中国物理 B》2008,17(4):1377-1382
In this paper the elastic and thermodynamic properties of the cubic zinc-blende structure BeS at different pressures and temperatures are investigated by using \textit{ab initio} plane-wave pseudopotential density functional theory method within the generalized gradient approximation (GGA). The calculated results are in excellent agreement with the available experimental data and other theoretical results. It is found that the zinc-blende structure BeS should be unstable above 60GPa. The thermodynamic properties of the zinc-blende structure BeS are predicted by using the quasi-harmonic Debye model. The pressure-volume-temperature ($P-V-T$) relationship, the variations of the thermal expansion coefficient $\alpha$ and the heat capacity $C_{V}$ with pressure $P$ and temperature $T$, as well as the Gr\"{u}neisen parameter-pressure-temperature ($\gamma -P-T$) relationship are obtained systematically in the ranges of 0--90GPa and 0--2000K.  相似文献   

12.
王建坤  吴振森 《中国物理 B》2008,17(8):2919-2924
This paper calculates the equilibrium structure and the potential energy functions of the ground state (X^2∑^+) and the low lying excited electronic state (A^2Л) of CN radical are calculated by using CASSCF method. The potential energy curves are obtained by a least square fitting to the modified Murrell-Sorbie function. On the basis of physical theory of potential energy function, harmonic frequency (ωe) and other spectroscopic constants (ωeχe, βe and αe) are calculated by employing the Rydberg-Klei-Rees method. The theoretical calculation results are in excellent agreement with the experimental and other complicated theoretical calculation data. In addition, the eigenvalues of vibrational levels have been calculated by solving the radial one-dimensional SchrSdinger equation of nuclear motion using the algebraic method based on the analytical potential energy function.  相似文献   

13.
A critical evaluation and thermodynamic modeling for thermodynamic properties of all oxide phases and phase diagrams in the Fe–Mn–O system are presented. Optimized Gibbs energy parameters for the thermodynamic models of the oxide phases were obtained which reproduce all available and reliable experimental data within error limits from 298 K to above the liquidus temperatures at all compositions covering from known oxide phases, and oxygen partial pressure from metal saturation to 0.21 bar. The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. Two spinel phases (cubic and tetragonal) were modeled using Compound Energy Formalism (CEF) with the use of physically meaningful parameters. The present Fe–Mn spinel solutions can be integrated into a larger spinel solution database, which has been already developed. The database of the model parameters can be used along with a software for Gibbs energy minimization in order to calculate any type of phase diagram section and thermodynamic properties.  相似文献   

14.
The linear and nonlinear optical properties in non-centro-symmetric cubic semiconductor GaX (X=As, Sb, P) are studied by using the first-principle full potential linear augmented plane wave (FP-LAPW) and the linear muffin-tin orbital (LMTO) methods. We present calculations of the frequency-dependent complex dielectric function and it zero-frequency limit . A simple scissor operator is applied to adjust the band gap from the local-density calculations to match the experimental value. Calculations are reported for the frequency-dependent complex second-order non-linear optical susceptibilities up to 6 eV and it zero-frequency limit . Comparison with available experimental data shows good agreement. Our calculations show excellent agreement between the two methods.  相似文献   

15.
A complete literature review, critical evaluation and thermodynamic modeling of the phase diagrams and thermodynamic properties at 1 bar total pressure of all oxide phases in the Fe-Mg-O system are presented. Optimized model equations for the thermodynamic properties of all phases are obtained which reproduce all available thermodynamic and phase equilibrium data within experimental error limits from 25 °C to above the liquidus temperatures at all compositions and oxygen partial pressures. The complex phase relationships in the system have been elucidated and discrepancies among the data have been resolved. The database of the model parameters can be used along with software for Gibbs energy minimization in order to calculate any type of phase diagram section. Sublattice models, based upon the compound energy formalism, were used for the spinel, pyroxene, olivine and monoxide phases. The use of physically reasonable models means that the models can be used to predict properties, phase equilibria, and cation site distributions in composition and temperature regions where data are not available.  相似文献   

16.
《Solid State Ionics》2006,177(7-8):765-777
A complete critical evaluation and thermodynamic modeling of the phase diagrams and thermodynamic properties of the Mn–Cr–O system at 1 bar total pressure are presented. Optimized equations for the thermodynamic properties of all phases are obtained, which reproduce all available and reliable thermodynamic and phase equilibrium data within experimental error limits from 25 °C to above the liquidus temperatures at all compositions and oxygen partial pressures. As results of optimization, the Gibbs energy function of MnCr2O4 is for the first time properly estimated and the discrepancies of the phase diagram experiments of the Mn–Cr–O system are resolved. In particular, unexplored phase diagrams and thermodynamic properties of the Mn–Cr–O system of importance for the oxidation of SOFC interconnect are predicted on the basis of the optimized model parameters. The database of the model parameters can be used along with software for Gibbs energy minimization in order to calculate any type of phase diagram sections and thermodynamic properties.  相似文献   

17.
18.
张舒迈  金亮  宋智 《中国物理 B》2022,31(1):10312-010312
We investigate the topological properties of a trimerized parity–time(PT)symmetric non-Hermitian rhombic lattice.Although the system is PT-symmetric,the topology is not inherited from the Hermitian lattice;in contrast,the topology can be altered by the non-Hermiticity and depends on the couplings between the sublattices.The bulk–boundary correspondence is valid and the Bloch bulk captures the band topology.Topological edge states present in the two band gaps and are predicted from the global Zak phase obtained through the Wilson loop approach.In addition,the anomalous edge states compactly localize within two diamond plaquettes at the boundaries when all bands are flat at the exceptional point of the lattice.Our findings reveal the topological properties of the??PT-symmetric non-Hermitian rhombic lattice and shed light on the investigation of multi-band non-Hermitian topological phases.  相似文献   

19.
Pure W and W-Cu-W trilayer coatings were deposited on an Fe substrate by d.c. magnetron sputtering. The α-β phase evolution, intragranular stress evolution in sputter-deposited W layer were investigated by x-ray diffraction. They are directly related to the film microstructure, density and adhesion. Therefore, control of the film stress and phase component transition is essential for its applications. The phase component transition from β-W to α-W and intragranular stress evolution from tensile to compressive strongly depend on the deposition parameters and can be induced by lowering Ar pressure and rising target power. The compressively stressed films with α-W phase have a dense microstructure and high adhesion to Fe substrate.  相似文献   

20.
Thermodynamic and transport properties of high temperature equilibrium air plasmas have been calculated in a wide pressure ( atm) and temperature range ( K). The results have been obtained by using a self-consistent approach for the thermodynamic properties and higher order approximation of the Chapman-Enskog method for the transport coefficients. Debye-Hükel corrections have been considered in the thermodynamic properties while collision integrals of charge-charge interactions have been obtained by using a screened Coulomb potential. Calculated values have been fitted by closed forms ready to be inserted in fluid dynamic codes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号