首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
(Na0.52K0.44Li0.04)Nb0.9-x Sbx Ta0.1O3 lead-free piezoelectric ceramics are prepared by a solid-state reaction method. With increasing Sb content, the transition temperature from orthorhombic to tetragonal polymorphic phase decreased. A composition (Na0.52K0.44Li0.04)Nb0.863Sb0.037Ta0.1O3 is found to possess excellent piezo- electric and electromechanical performances (d33 = 306pC/N, kp =48%, and kt=50%), and high Curie temperature (Tc = 320 ℃). These results indicate that (Na0.52K0.44Li0.04)Nb0.863Sb0.037 Ta0.1O3 is a promising lead-free piezoceramics replacement for lead zirconate titanate.  相似文献   

2.
KNN Based Lead-Free Piezoceramics with Improved Thermal Stability   总被引:1,自引:0,他引:1       下载免费PDF全文
Lead-free piezoelectric ceramics (1 - x) (Na0.53K0.404 Li0.066)Nb0.92 Sb0.08 03 +xZrTiO3 are fabricated by conventional solid-state sintering method, and their dielectric and piezoelectric characteristics are investigated. With the addition of SrTiO3, the growth of the grain size is restrained, meanwhile the phase transition temperature of orthorhombic-tetragonal is shifted below room temperature. It is found that the ceramics with x = 0.010 exhibit excellent piezoelectric properties (d33 = 220 pC/N, kp = 41%, kt = 39%) and improved thermal stability around room temperature. The results indicate that these materials are promising lead-free piezoceramics for practical operations.  相似文献   

3.
Lead-free piezoelectric ceramics (Na0.53K0.422Li0.048 ) (Nb0.89Sb0.06 Ta0.05 )03 (NKLNST) + x tool SrCO3 are prepared by conventional solid state sintering method. The specimens with pure perovskite structure show tetragonal phase at x 〈 0.01, and become pseudo-cubic phase at x 〉 0.02. A lattice parameter discontinuity is found in the specimens with 0.004 〈 x 〈 0.0075, along with a great improvement in piezoactivity. The 0.004 mol SrCO3 added NKLNST ceramics possesses outstanding performances of kp = 0.53, kt = 0.26, and d33=309 pC/N. Moreover, the Sr^2+ modification inhibits the gra/n growth, decreases the Curie temperature, and induces a diffuse phase transition.  相似文献   

4.
Bi0.5 (Na0.72K0.28- x Lix )0.5 TiO3 (BNKLT- 100x) lead-free piezoelectric ceramics are synthesized by conventional solid state sintering techniques. The dielectric and piezoelectric properties of the BNKLT-100x ceramics as a function of Li content are systematically investigated. It is found that not only Li content but also the sintering temperature has a strong effect on the piezoelectric properties of BNKLT. The piezoelectric constant d33 Of BNKLT varies from 120 to 252pC/N in the Li content range from 0.03 to 0.16. In the sintering temperature range from 1080 to 1130℃, the d33 value of BNKLT-6 changes from 200pC/N to 252pC/N. The BNKLT-6 sample sintered at 1100℃ has the highest piezoelectric constant d33 of 252pC/N, with the electromechanical coupling factors kp of 0.32 and kt of 0.44.  相似文献   

5.
New lead-free ceramics (Lio.12Na0.88) (Nbo.9-x Ta0.10 Sbx) 03 (0.01 × 0.06) are synthesized by solid-state reaction method. The dielectric, piezoelectric and ferroelectric properties of the ceramics are studied. The dielectric constant dependence with temperature and frequency of the ceramic specimen with x = 0.04 shows typical characteristics of relaxor ferroelectrics, and the Vogel-Fulcher relationship is fulfilled. The dielectric behaviour and its relation to the phase transition phenomena are discussed. The polarization hysteresis loops at room temperature are also measured.  相似文献   

6.
Lead-free (Na0.5K0.5)NbO3-xmol% ScTaO4 (x=0-1.5) ceramics are prepared using the conventional solid-state reaction method and their properties are investigated in detail. The results indicate that the piezoelectric properties and density are improved by the introduction of ScTaO4. Due to the high orthorhombic-tetragonal phase transition temperature TO-T (around 200°C), stable piezoelectric properties against temperature are obtained. In a wide temperature range of 15-160°C, kp of the (Na0.5K0.5)NbO3-0.5mol% ScTaO4 ceramic remains almost unchanged and d31 increases slightly from 59pC/N to 71pC/N. The deliquescent problem is effectively solved by the addition of ScTaO4. The piezoelectric properties of ScTaO4 modified (Na0.5K0.5)NbO3 ceramics show no obvious reduction and dielectric loss increases slightly after 120h of immersion. From the analysis, it is suggested that the density is an important factor that improves the humidity resistance of the specimens.  相似文献   

7.
赵静波  杜红亮  屈绍波  张红梅  徐卓 《中国物理 B》2011,20(6):67701-067701
Effects of A-site non-stoichiometry on the structural and electrical properties of 0.96K0.5+xNa0.5+xNbO3- 0.04LiSbO3 lead-free piezoelectric ceramics were examined for 0 ≤ x ≤ 0.02. The piezoelectric coefficients exhibited a maximum, d33 = 187 pC/N at x = 0.0075, coinciding with the maximum of the grain size and the apparent density at x = 0.0075. The apparent density and the piezoelectric coefficients decreased with increasing x at higher x which was likely due to the crystal geometrical distortion of 0.96K0.5+xNa0.5+xNbO3-0.04LiSbO3. In addition, super-large grains were found and this may be due to liquid phase sintering. Excess (K++Na+) attracted a sum of space charges to keep the charge neutral, resulting in charge leakage during the course of ceramic polarization, influencing the piezoelectric and ferroelectric properties. These findings are of importance for guiding the design of K0.5Na0.5NbO3-based lead-free ceramics with enhanced electrical properties.  相似文献   

8.
This paper describes the preparation of a piezoelectric glass ceramic material from potassium sodium niobate(K0.5Na0.5Nb O3;KNN) using a novel melting method.The effects of the subsequent heat-treatment on the optical,thermal,electrical,and mechanical properties of the material are carefully examined,and its crystal structure and surface morphology are characterized respectively by x-ray diffraction and scanning electron microscopy.This new material has a much higher piezoelectric coefficient(163 p C·N-1) than traditional piezoelectric ceramics(131 p C·N-1).On this basis therefore,a strategy for the future study and development of lead-free KNN-based piezoelectric glass ceramics is proposed.  相似文献   

9.
The piezoelectric properties of K1-xNaxNbO3 are studied by using first-principles calculations within virtual crystal approximation. To understand the critical factors for the high piezoelectric response in K1-x Na x Nb O3, the total energy,piezoelectric coefficient, elastic property, density of state, Born effective charge, and energy barrier on polarization rotation paths are systematically investigated. The morphotropic phase boundary in K1-x Na x Nb O3 is predicted to occur at x = 0.521, which is in good agreement with the available experimental data. At the morphotropic phase boundary, the longitudinal piezoelectric coefficient d33 of orthorhombic K0.5Na0.5NbO3 reaches a maximum value. The rotated maximum of d*33is found to be along the 50° direction away from the spontaneous polarization(close to the [001] direction). The moderate bulk and shear modulus are conducive to improving the piezoelectric response. By analyzing the energy barrier on polarization rotation paths, it is found that the polarization rotation of orthorhombic K0.5Na0.5NbO3 becomes easier compared with orthorhombic KNbO3, which proves that the high piezoelectric response is attributed to the flattening of the free energy at compositions close to the morphotropic phase boundary.  相似文献   

10.
The garnet-type Li7La3Zr2O12 ceramic is a promising solid electrolyte for all-solid-state secondary lithium batteries. However, it faces the problem of lithium volatilization during sintering, which may cause low density and deterioration of ionic conductivity. In this work, the effects of sintering temperature and addition on the density as well as the lithium ion conductivity of Li7-xLa3Zr2-xTaxO12 (LLZTO, x=0.25) ceramics prepared by solid state reaction have been studied. It is found that optimization of the sintering temperature leads to a minor increase in the ceramic density, yielding an optimum ionic conductivity of 2.9×10-4 S·cm-1 at 25℃. Introduction of Li 3 PO 4 addition in an appropriate concentration can obviously increase the density, leading to an optimum ionic conductivity of 7.2×10-4 S·cm-1 at 25℃. This value is superior to the conductivity data in most recent reports on the LLZTO ceramics.  相似文献   

11.
Praseodymium doped Bi4Ti3O12 (BIT) ceramics with composition Bi2.9Pr0.9Ti3O12 (BPT) were prepared by solid state reaction. These samples have polycrystalline Bi-layered perovskite structure without preferred orientation, and consist of well-developed plate-like grains with random orientation. Pr doping into BIT causes a large shift of the Curie temperature (TC) of the BIT from 675 to 398 °C. At an electric field of 87 kV/cm, the remanent polarization and the coercive field of the BPT ceramics are 30 μC/cm2 and 52 kV/cm, respectively. Furthermore, the dielectric permittivity and the dissipation factor of the BPT ceramics are 300 and 0.003 at 1 MHz, 1 V, and room temperature. Ferroelectric properties of the BPT ceramics are superior to V-doped Bi4Ti3O12 (∼20 μC/cm2 and 80 kV/cm) and (Sr, Ta)-doped Bi4Ti3O12 (∼12 μC/cm2 and 71 kV/cm) ceramics. In addition, the dense ceramics of praseodymium-doped B4Ti3O12 were obtained by sintering at 1100 °C, about 100-200 °C lower than those of the SrBi2Ta2O9 system.  相似文献   

12.
Bismuth doped bismuth sodium titanate ceramics [(Bi1/2Na1/2)(1−1.5x)BixTiO3, x=0 to 0.06] were prepared, and the resulting effects on the microstructure and dielectric properties were examined. All of the Bi-doped ceramics exhibited a single phase of perovskite structure with rhombohedral symmetry. The poling leakage current was significantly reduced by the doping of Bi, facilitating the poling process of the ceramics. The doping with Bi enhances the piezoelectric properties and increases the dielectric constant and the dielectric loss of the ceramics. At 2 mol% Bi-doping level, the ceramics exhibit a large remanent polarization of 47 μC/cm2 and a relatively low coercive field of 71 kV/cm, while their d33 and kp reach a maximum value of 95 pC/N and 21%, respectively.  相似文献   

13.
Bismuth sodium barium titanate/poly(vinylidene fluoride-trifluoroethylene) 70/30 [(Bi0.5Na0.5)0.94Ba0.06TiO3-P(VDF-TrFE)] 0-3 composites were prepared by a hot-press method for different volume fractions of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramic powder in a P(VDF-TrFE) 70/30 copolymer matrix. The relative permittivity and dielectric loss of the composites increased with increase in the volume fraction of the ceramics, which well follows the Bruggeman model. The polarization responses of the composites were strongly dependent on the ceramic volume fraction. The composites with a higher ceramic volume fraction showed an increase in remanent polarization. At room temperature, a 0.3(Bi0.5Na0.5)0.94Ba0.06TiO3-0.7P(VDF-TrFE) composite showed a relative permittivity εr=30, remanent polarization and coercive field   相似文献   

14.
The Aurivillius type oxide Bi1.9Te0.1SrNb1.9Hf0.1O9 has been studied by Perturbed Angular Correlations spectroscopy using 181Ta probes. The spin precession curves were measured from room temperature up to 873 K. Two sites are occupied by probes and the temperature dependence of both indicates a continuous phase transition at about 625 K. One site is ordered while the other is disordered. This situation is analyzed in terms of simple models already applied to perovskites. The transition temperature of the solid solution Bi2−xTexSrNb2−xHfxO9 (with 0≤x≤0.5) shows a strong dependence on composition.  相似文献   

15.
Bi3.25La0.75 Ti3O12 (BLT) ferroelectric thin films are deposited by sol-gel method and annealed for crystallizaion in total l eccm N2/02 mixed gas with various ratio at 750℃ for 30rain. The effect of crystallization ambient on the structural and ferroelectric properties of the BLT films is studied. The growth direction and grain size of BLT film are revealed to affect ferroeleetric properties. Alter the BLT film is annealed in 20%O2, the largest P~ value is obtained, which is ascribed to an increase of random orientation and large grain size. The fatigue property is improved with the concentration of oxygen in the ambient increasing, which is ascribed to annealing in the ambient with high concentrated oxygen adequately decreasing the defects related to lack of oxygen.  相似文献   

16.
(K0.5Na0.5)NbO3 (KNN) based lead free ceramics have been fabricated by a solid state reaction. In this work, LiSbO3 (LS) modified KNN based ceramics were sintered at atmospheric pressure and high density (>96% theoretical) was obtained. The detailed elastic, dielectric, piezoelectric and electromechanical properties were characterized by using the resonance technique combined with the ultrasonic method. The full set of material constants for the obtained polycrystalline ceramics were determined and compared to the pure hot pressed KNN counterpart. KNN-LS polycrystalline ceramic was found to have higher elastic compliance, dielectric permittivity and piezoelectric strain coefficients, but lower mechanical quality factor, when compared to pure KNN, exhibiting a “softening” behavior. However, a high coercive field (∼17 kV/cm) was found for the LS modified KNN material. The properties as a function of temperature were determined in the range of −50-250 °C, showing a polymorphic phase transition near room temperature, giving rise to improved piezoelectric behavior.  相似文献   

17.
Piezoelectric ceramics with compositions of (0.90−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3-0.10PbZrO3, x=0.28, 0.31, 0.34, 0.37, 0.40 and 0.43, were prepared using the conventional columbite precursor method, and their structural phase transformation and piezoelectric behaviors near the morphotropic phase boundary (MPB) have been systematically investigated as a function of PbTiO3 content. X-ray diffraction (XRD) results demonstrate that the structure of the ceramics experiences a gradual transition process from rhombohedral phase to tetragonal phase with the increasing of PbTiO3 content, and that compositions with x=0.34-0.40 lie in the MPB region of this ternary system. A Raman spectra investigation of the ceramic samples testified to the transformation process of rhombohedral phase to tetragonal phase by comparing the relative intensities of tetragonal E(2TO1) mode and rhombohedral phase Rh mode. The structure information was also correlated to the parabola change of the piezoelectric constant; the maximum piezoelectric constants were obtained near the MPB region.  相似文献   

18.
The high-temperature dielectric properties of SiO2/Si3N4 nanocomposites are investigated theoretically and experimentally. Its permittivities and loss tangents at the temperature ranging from room temperature to 1300°C at 9.0GHz are measured by the resonant cavity method. The SiO2/Si3N4 nanocomposites show complex dielectric behaviour at elevated temperature, and a multi-scale model is proposed to describe the dependence of the dielectric properties in the SiO2/Si3N4 on its compositional variations. Such a theory is needed so that the available property measurements could be extrapolated to other operating frequencies and temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号