首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 796 毫秒
1.
以焦炉上升管内壁结焦炭层块为研究对象,采用X射线荧光光谱仪(XRF)、X射线衍射仪(XRD)、傅里叶红外光谱仪(FTIR)和激光共聚焦拉曼光谱仪(Raman)对结焦炭层的元素组成,以及各结焦炭层的矿物组成、组成结构和分子结构进行测试。分析从结焦炭层块外表面向内表面过渡的各结焦炭层的差异性,揭示焦炉上升管内壁结焦机理。结果表明焦炉上升管内粉尘中Fe,S和Cr极易催化荒煤气中蒽、萘等稠环芳烃化合物成炭,在焦炉上升管内壁形成炭颗粒沉积,为焦油凝结挂壁提供载体,在荒煤气温度降至结焦温度时易结焦积碳。结焦炭层均含有芳香层结构,随着结焦炭层从外表面向内表面过渡,各结焦炭层的面层间距(d002)逐渐降低、层片直径(La)先降低后增加、层片堆砌高度(Lc)和芳香层数(N)先稳定后增加。结焦炭层石墨化过程是由结焦炭层内表面向外表面进行,主要包括其片层外缘的羧基和部分C-O结构的降解剥离,从而形成高度规整的共轭结构。结焦炭层块中C元素是以结晶碳与无定型碳的混合物形式存在。以上研究为解决焦炉上升管内壁结焦及腐蚀问题,提高换热器换热效率,有效回收焦炉荒煤气显热,降低焦化企业能耗提供实验基础和理论依据。  相似文献   

2.
采用熔融共混技术,将聚磷酸铵(APP)和氢氧化铝(ATH)引入到聚氨酯弹性体(TPU)中,制备了一系列热塑性聚氨酯/聚磷酸铵/氢氧化铝(TPU/APP/ATH)复合材料。采用傅里叶红外光谱(FTIR)、X-射线光电子能谱(XPS)、扫描电镜(SEM)、激光拉曼光谱研究了TPU和阻燃TPU(FR-TPU)复合材料燃烧后炭渣的微观形貌、表面结构、元素组成、键合状态和石墨化程度,结合阻燃性能测试,揭示APP和ATH的协同阻燃机制。SEM分析表明相较于APP与ATH单独使用,TPU/APP/ATH炭层的空洞结构更少,炭渣的致密性更高。XPS分析表明FR-TPU的炭渣中C元素含量相比于纯TPU有所降低,O元素的含量有所上升,其中TPU/APP10/ATH10的C元素含量从88.2%降至69.24%,O元素的含量从8.07%升至17.78%,P和Al元素含量相较于单独添加分别从11.74%和16.36%下降至3.91%和3.31%。在此基础上,通过对C元素的分峰拟合发现TPU炭渣中C—C/C—H,C—O/C—N和CO/CN含量分别为61.05%,35.65%和3.30%;TPU/APP10/ATH10炭渣中三种结构含量分别为45.38%,45.00%和9.63%,说明ATH和APP复配使用有利于C元素形成酯、醚、羰基、羧酸(盐)、酯基等结构。通过对O元素的分峰拟合发现,TPU炭渣中O2/H2O,—O—,O三种结构含量分别为28.75%,44.36%和26.89%;TPU/APP10/ATH10炭渣中O2/H2O,—O—,O三种结构含量分别为44.33%,32.78%和22.89%,说明APP和ATH的加入有利于炭渣中O元素形成O2/H2O结构。通过对N元素的分峰拟合发现,TPU炭渣中—NH—,N结构的N元素含量分别为40.93%和59.07%;TPU/APP10/ATH10中—NH—,N结构的N元素含量分别47.17%和52.83%,说明ATH与APP复配使用促进了—NH—结构的形成。拉曼测试表明,相比于单独使用,APP和ATH复配使用,炭层的石墨化程度更好,致密性更高。以上分析结合阻燃测试可以得出TPU/APP/ATH复合材料阻燃机制:ATH受热分解生成氧化铝,吸收热量并释放大量水蒸气,有效促进APP降解,生成不燃性的氨气和聚磷酸,氨气和水蒸气稀释可燃性气体的浓度。随着温度继续升高,氧化铝可继续与聚磷酸反应生成偏磷酸铝[Al(PO3)3],同步催化聚氨酯基体成炭,形成高度石墨化炭层,石墨化炭层与偏磷酸铝一起覆盖在基体表面,有效抑制燃烧区域物质以及能量的输运,从而达到阻燃目的。  相似文献   

3.
通过磷酸(H3PO4)和焦磷酸(H4P2O7)对生物炭改性能够使其更适于农业应用。探明H3PO4和H4P2O7改性生物炭的P赋存形态与结合方式,将有助于揭示其表面P的生物有效性。以麦秆生物炭(WBC)与棉秆生物炭(CBC)为原料,分别通过H3PO4和H4P2O7制备了H3PO4改性生物炭(P-WBC和P-CBC)和H4P2O7改性生物炭(PA-WBC和PA-CBC)。利用拉曼光谱(Raman)与扫描电镜能谱(SEM-EDS)对改性生物炭结构与P分布变化进行表征,采用傅里叶红外光谱(FTIR)和X射线光电子能谱(XPS)探究改性生物炭表面P结合方式,并结合Hedley磷分级方法与可见分光光度法,定量分析改性前后生物炭中P形态及含量变化。结果表明,H3PO4和H4P2O7改性后生物炭IG/ID值增大,石墨化结构增强,形成了含P颗粒状结构。H3PO4和H4P2O7改性促进了生物炭表面羧基(—COOH)、P—O—P和P—H等酸性官能团与含P基团的形成,且H3PO4改性生物炭和H4P2O7改性生物炭表面官能团种类相似。XPS结果显示,与WBC和CBC相比,改性处理中的O(1s)峰相对含量显著增加了13.15%~32.44%,P(2s)峰相对含量显著增加了18.54%~27.02%(p<0.05)。反褶积分峰将P(2s)与O(1s)分为C—P—O,C—O—P,OPO,CO与(或)PO,C—O—C与(或)P—O—C和P—O—P六类。较H3PO4改性而言,H4P2O7改性能够促进更多C—O—P,OPO,C—O—C与(或)P—O—C和P—O—P键的形成。改性也使得生物炭中总P含量显著增加,且PA-WBC和PA-CBC中P含量显著高于P-WBC和P-CBC。与WBC和CBC相比,改性处理中活性P含量显著提高2.36~14.77 g·kg-1,稳定态P含量显著降低0.06~0.17 g·kg-1(p<0.05)。与P-WBC和P-CBC相比,PA-WBC和PA-CBC的活性P、中等活性P分别显著增加了5.27~15.66和0.53~0.64 g·kg-1, 稳定态P含量减少了0.03~0.34 g·kg-1(p<0.05)。H3PO4和H4P2O7改性改变了P在生物炭表面的结合方式,同时增加了P的活性。H3PO4和H4P2O7改性生物炭间,不同形态P含量和结合方式的差异对进一步探究P的生物有效性具有重要意义。  相似文献   

4.
原子层沉积的SnOx薄膜具有良好的均匀性和致密性,常被用于提升倒置平面结构钙钛矿太阳能电池的稳定性。而SnOx薄膜的特性对器件能量转换效率(Power conversion efficiency,PCE)有着重要影响。本文通过氧源(H2O、O3)调控SnOx薄膜的能级和导电性,提升器件PCE。结果表明,O3作为单一氧源的SnOx薄膜(记为O3-SnOx)具有较优的能级排列;而只有H2O作氧源的SnOx薄膜(记为H2O-SnOx)具有较高的电导率。而采用O3和H2O混合氧源制备的SnOx(记为MIX-SnOx),则兼顾了能级匹配和良好的导电性,有效提升器件的PCE,达到20.9%。不仅如此,得益于SnOx  相似文献   

5.
采用热重-傅里叶红外光谱(TG-FTIR)研究硬质聚氨酯泡沫(RPUF)和硬质聚氨酯泡沫/膨胀石墨复合材料(RPUF/EG)燃烧过程中气相产物生成及变化规律,采用扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)研究其炭渣的微观形貌、元素组成及键合状态,结合阻燃性能测试阐明RPUF/EG复合材料阻燃机理。SEM分析表明RPUF/EG复合材料燃烧后炭渣中存在大量"蠕虫状"结构。TG-FTIR分析表明RPUF/EG复合材料热解分为两个阶段,第一个阶段对应于聚氨酯分子链硬段的降解,第二个阶段对应于聚氨酯分子链软段的降解,降解产物有异氰酸酯化合物、胺类化合物、碳氢化合物、芳香族化合物、 CO、 CO_2以及酯类化合物, RPUF/EG硬段降解产物强度高于PRUF的降解。XPS分析表明RPUF炭渣中C, N和O元素含量分别为77.63%, 10.30%和12.07%, RPUF/EG30炭渣三种元素含量分别为82.18%, 9.18%和8.35%。在此基础上,通过对C元素的分峰拟合发现RPUF炭渣中C—C/C—H, C—O/C—N和CO/CN含量分别为51.38%, 38.89%和9.73%, RPUF/EG30炭渣中三种结构含量分别为53.99%, 37.62%和8.39%,说明膨胀石墨的加入有利于聚氨酯分子链中C元素形成稳定石墨碳结构,从而有利于形成致密炭层;通过对N元素的分峰拟合发现RPUF炭渣中—NH—和N结构含量分别为49.06%和50.94%, RPUF/EG30炭渣中—NH—和N结构含量分别为43.96%和56.04%,说明膨胀石墨的加入有利于聚氨酯分子链中N元素形成稳定芳杂环结构,从而形成致密炭层;通过对O元素的分峰拟合发现RPUF炭渣中O,—O—和O_2/H_2O三种结构含量分别为19.30%, 16.72%和63.98%, RPUF/EG炭渣中三种结构含量分别为25.57%, 36.60%和37.83%,进一步说明RPUF/EG炭渣致密性明显提高。综合TG-FTIR, XPS和SEM分析,结合阻燃性能测试可以得出RPUF/EG复合材料阻燃机制:膨胀石墨粒子在燃烧过程中膨胀形成"蠕虫状"结构,其释放的酸性气体促进了聚氨酯分子链硬段的降解,并且促进聚氨酯分子链中C和N等元素形成致密炭层,上述致密炭层与"蠕虫状"结构一起覆盖在燃烧区域表面,有效抑制燃烧区域物质以及能量的输运,从而达到阻燃目的。以上研究为揭示膨胀石墨阻燃机理,拓展其在相关领域的使用提供了实验基础和理论依据。  相似文献   

6.
车晓芳  陈宏善 《物理学报》2011,60(4):43601-043601
(H2O)6是形成三维立体结构的最小水分子团簇并具有能量较低的多个稳定异构体.本文利用从头计算方法研究了各稳定结构的异构化过程.(H2O)6的环状结构与最稳定结构的能量差0.31 eV为一个氢键的键能.水分子团簇的异构化是分子间氢键打开或重组的过程,不同异构体之间的转化每次只涉及一个氢键的打开或重组,异构化的能垒高度在0.07—0.21 eV之间. 关键词: 水分子团簇 2O)6')" href="#">(H2O)6 异构化过程 从头计算  相似文献   

7.
赵巍  汪家道  刘峰斌  陈大融 《物理学报》2009,58(5):3352-3358
采用第一性原理研究了H2O分子在Fe(100),Fe(110),Fe(111)三个高对称晶面上的表面吸附.结果表明,H2O分子在三个晶面上的最稳定结构皆为平行于基底表面的顶位吸附结构.H2O分子与三个晶面相互作用的吸附能及几何结构计算结果表明H2O分子与三个晶面的相互作用程度不同,H2O分子与Fe(111)晶面的相互作用最强,其次是Fe(100),相互作用最弱的是Fe(110)表面,而这与晶面原子 关键词: 第一性原理 Fe单晶表面 2O分子')" href="#">H2O分子 分子吸附  相似文献   

8.
H2O和CH4在气候变化过程中起着关键作用,实时在线测量H2O和CH4浓度一直都是国内外学者研究的热点问题之一。利用1.653 μm可调谐半导体激光器作光源,结合反射率为99.997 6%的两片高反射镜组成离轴腔增强吸收光谱装置,开展了H2O和CH4的高灵敏度测量研究。离轴腔增强系统的有效吸收光程通过吸收面积-浓度关系法来标定,吸收面积-浓度关系法的可行性首先通过已知光程的光学吸收池进行验证,确定有效后用于标定离轴腔增强系统的有效光程。结果表明,基长为21 cm的离轴腔增强系统的有效吸收光程达到了8 626.3 m。当谐振腔内压力为5.06 kPa时,利用7组不同浓度的CH4标准气体(0.2~1.4 μmol·mol-1)对系统进行了线性响应标定测试,得到了CH4吸收的积分面积与浓度拟合关系曲线。系统的稳定性、可实现的最小探测灵敏度等信息通过Allan方差进行分析,结果表明系统对探测CH4的最佳平均时间为100 s,最小可探测浓度极限为7.5 nmol·mol-1;系统对探测H2O的最佳平均时间为200 s,最小可探测浓度极限为55 μmol·mol-1。对提高系统测量精度的数据处理方法也进行了分析研究,结果表明相比于多次平均方法,Kalman滤波能显著的提高测量精度,而且缩短了系统的响应时间。最后,利用搭建的离轴腔增强实验系统结合Kalman滤波数据处理方法对实际大气中CH4和H2O浓度进行了连续两天的测量,CH4每天平均的浓度分别为2.1和2.08 μmol·mol-1,H2O每天平均的浓度分别为11 515.6和11 628.6 μmol·mol-1,由此可知建立的离轴腔增强吸收光谱装置能够用于大气CH4和H2O的测量,另外建立的系统也可用于相关工业领域的高灵敏度CH4和H2O监测。  相似文献   

9.
张轶杰  唐春梅  高凤志  王成杰 《物理学报》2014,63(14):147401-147401
采用密度泛函理论中的广义梯度近似研究C6Li吸附H2O分子并将之进行分解的催化过程. 几何优化发现:Li原子最稳定的吸附位置是位于C 原子顶位上方. 研究表明,第一个H2O 分子吸附在C6Li上需要克服1.77 eV的能量势垒,然后分解为H和OH且与Li原子成键. 当吸附第二个H2O分子时,第二个H2O分子需要克服1.2 eV的能量势垒分解为H和OH,其中H与Li原子上的H原子结合成H2,OH则替代Li 原子上的H结合在Li原子上. 因此C6Li 可以作为催化剂将H2O分子进行分解得到H2. 分析可知:C6Li主要是通过Li原子与H2O之间形成的偶极矩作用来吸附H2O 分子,与C60Li12 的储氢机制类似. 研究结果可为储氢材料的制备提供一个新的思路. 关键词: 6')" href="#">C6 Li 2O')" href="#">H2O 密度泛函理论  相似文献   

10.
将可调谐半导体激光吸收光谱技术应用于高温气体浓度在线检测,谱线参数的准确性非常重要。为利用红外波段进行燃烧生成H2O的浓度在线测量,需要实验校准H2O的谱线参数,尤其是Ar加宽系数,该系数对燃烧反应速率测量和机理验证至关重要。采用半导体激光器作为光源,结合实验室搭建的谱线参数测量系统,采集了1.39 μm波段附近H2O的4条吸收谱线信号,获得了谱线线强、自加宽系数和N2加宽系数,与HITRAN数据库和文献结果进行了对比,均吻合较好。首次系统地获得了该波段谱线的Ar加宽系数。在谱线参数确定基础上,获得了在反射激波高温条件下H2/O2/Ar燃烧生成H2O的浓度随时间的演变曲线,验证了相应燃烧动力学机理。结果为利用该波段进行含氢燃料燃烧过程H2O浓度测量及相关高温燃烧动力学研究提供了可靠的实验依据。  相似文献   

11.
Atomic layer deposition of hafnium dioxide (HfO2) on silicon substrates was studied. It was revealed that due to low adsorption probability of HfCl4 on silicon substrates at higher temperatures (450–600 °C) the growth was non-uniform and markedly hindered in the initial stage of the HfCl4–H2O process. In the HfI4–H2O and HfI4–O2 processes, uniform growth with acceptable rate was obtained from the beginning of deposition. As a result, the HfI4–H2O and HfI4–O2 processes allowed deposition of smoother, more homogeneous and denser films than the HfCl4–H2O process did. The crystal structure developed, however, faster at the beginning of the HfCl4–H2O process.  相似文献   

12.
利用衰减全反射红外光谱(ATR-IR)分析NaOH对水及1-乙基-3-甲基咪唑醋酸酯离子液体水溶液(EmimAc/水)氢键网络的影响,研究结果表明,NaOH的加入会影响水分子的氢键对称性和类型,对称性氢键谱带Ⅰ(3 218 cm-1)和Ⅱ(3 375 cm-1)随着NaOH浓度的提高而降低。NaOH使水溶液氢键发生极化,产生连续吸收带,连续吸收带随着NaOH浓度的提高而增强。水对EmimAc的阳离子和阴离子均有影响。水分子的OH和EmimAc的COO-产生强的相互作用,在3 400~3 200 cm-1产生宽的吸收谱带;而水分子的质子和COO-作用使得C═O吸收谱带红移。水的加入使得EmimAc指纹区的谱带蓝移或吸收强度下降,表明水可以破坏EmimAc原有的氢键网络,形成“阴离子…HOH…阴离子”团簇,减弱了离子液体阴、阳离子之间的相互作用。NaOH替代水与EmimAc混合,ATR-IR谱图的变化并不显著,主要表现在谱带的吸收强度上。与EmimAc/水相比,EmimAc/NaOH水溶液的ATR-IR谱的吸收强度更高,表明NaOH水溶液对EmimAc氢键网络的破坏不如水显著。由此可见,可利用EmimAc/NaOH体系降低离子液体体系黏度,并且降低离子液体使用成本,对木质纤维原料预处理有一定的指导意义。  相似文献   

13.
14.
The electrical conductivity of Cr2O3 nominally doped with 2 mol% MgO has been studied by the four point a.c. technique as a function of the oxygen activity (O2 + Ar, CO + CO2 and H2 + H2O) in the temperature range 400–1200 °C. It is concluded that Cr2O3 doped with MgO is an extrinsic conductor and that the dissolved Mg-dopant is compensated by the formation of electron holes at near atmospheric oxygen pressures and by oxygen vacancies (or possibly interstitial chromium ions) at highly reduced oxygen activities (in CO + CO2 and H2 + H2O gas mixtures). In H2 + H2O mixtures Mg-doped chromia also dissolves hydrogen as protons and significantly affects the defect structure and electrical conductivity. The defect structure of the oxide under various conditions is discussed.  相似文献   

15.
The surface chemical reactions of O2 and H2O on clean lithium have been studied by a combination of XPS, EELS and microgravimetry. Reactions with O2 produce a monolayer of oxide which does not passivate the surface and which allows for the growth of several monolayers of additional oxide, probably as a result of the mixing of zero-valent metal into the oxide layer. The reaction of H2O with the clean lithium surface results in the complete dissociation of the molecule and loss of hydrogen to form one monolayer of the oxide. This is followed by the formation of multilayers of hydroxide/oxide mixtures which are shown to be unstable over periods of minutes, converting back to the oxide form predominantly.  相似文献   

16.
The hydrogen storage material FeTi has the disadvantage to lose its sorption capacity in contact with impurities such as O2 and H2O. A possibility to overcome this problem is to coat it with an anti-corrosive layer which is permeable for hydrogen. In this study we prepared FeTi layers covered with a (4 or 20 nm) thin Pd layer. We used ion beam and sputter profiling techniques, X-ray photoelectron spectrometry and scanning probe techniques to investigate the response of these bi-layers upon annealing up to 300°C in vacuum, air and 10−5 mbar O2. The layered structure remains intact up to 150°C. At 200°C in air and O2, Fe and (some) Ti move towards the Pd surface where they form oxide regions. At higher temperatures thicker oxide regions, presumably along the Pd grains, are formed. These processes are more pronounced for the case of 4 nm Pd. A model is presented to explain the observed phenomena. We conclude that up to 150°C 4 nm of Pd is sufficient to act as a protective layer. For a temperature of 200°C, 20 nm Pd may still provide sufficient protection against oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号