首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以焦炉上升管内壁结焦炭层为研究对象,采用扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)研究各结焦炭层的微观形貌、元素组成及键合状态,分析结焦炭层织构形成及演化规律。SEM研究表明,焦炉上升管内壁各结焦炭层形貌呈现较大的差异性,1#结焦炭层呈现0.1~1.0 μm颗粒化炭颗粒松散堆叠的多孔结构, 2#和3#结焦炭层呈现粒径为 1.0~3.0 μm 的炭颗粒堆积形貌且致密性有所提高,4#结焦炭层呈现大量花纹状致密结构。以上现象可说明结焦炭层的形成过程为:首先由荒煤气中多环芳烃形成0.1~1.0 μm的颗粒状初级炭层,颗粒状初级炭层在荒煤气粉尘中金属元素(如Fe)的催化作用下相互反应,形成更为致密的1.0~3.0 μm的中级炭层结构,中级炭层在高温条件下进一步形成致密的终级炭层结构。XPS分析表明,1#-4#结焦炭层含C量分别为91.78%,91.95%,92.74%和94.01%,含O量分别为5.58%,5.42%,4.39%和2.86%,C/O比分别为16.45,16.96,21.12和32.87,说明在炭层结构变化的同时,炭层中含氧基团在高温及粉尘中金属元素(如Fe)作用下发生脱除反应,使得炭层中宏观C/O比逐渐升高。在此基础上,通过对C元素键合状态分峰发现,1#-4#结焦炭层中C-C/C-H结构含量分别为80.42%,78.00%,75.50%和81.29%,C-O/C-N结构含量分别为10.22%,11.93%,13.54%和9.35%,C═O/C═N结构含量分别为9.36%,10.07%,10.96%和9.36%。O元素键合状态分峰发现,1#-4#结焦炭层中═O结构含量分别为20.40%,22.21%,19.93%,18.36%,-O-结构含量分别为24.60%,27.80%,31.35%,37.82%,O2/H2O结构含量分别为55.00%,49.99%,48.72%和43.82%。以上现象说明结焦炭层上发生如下化学变化:初级炭层中多孔结构会吸附荒煤气中的氧气(O2)和水分子(H2O)在高温条件下对炭层进行氧化。脱除反应和氧化反应使得炭层中O元素在微观键合状态发生明显改变,最终使得炭层中O2/H2O和═O结构含量降低,-O-结构含量升高。以上研究揭示了荒煤气上升管结焦炭层织构形成及演化机制,为解决焦炉荒煤气上升管内壁结焦问题,提高换热器效能,降低焦化企业能耗提供了实验基础和理论依据。  相似文献   

2.
低QI(原生喹啉不溶物)含量的软沥青(SCTP)是制备煤系针状焦的优选原料,研究其在成焦过程中的结构变化有助于高品质针状焦的研制。基于样品的X射线衍射(XRD)数据,利用Smarsly团队开发的CarbX软件对其全谱拟合,定量出SCTP在不同炭化温度(400,500,600,800,1 000,1 200和1 400 ℃)下的微晶结构参数,进而在纳米尺度下研究SCTP的热致结构变化情况。结果表明,随炭化温度升高,微晶堆垛的石墨烯层大小La从初始沥青的10.3 Å逐步增大到1 400 ℃的47.9 Å,但在500 ℃前La增加缓慢,只有当温度超过800 ℃后,La才显著增大,这表明需要800 ℃以上的高温才能使交联石墨烯层内的原子重组,进而导致微晶长大。然而,石墨烯碳网的C—C键长lcc受温度的影响很小,在1.41~1.42 Å范围内变化。由于SCTP在液相炭化成半焦过程中存在中间相转化,导致微晶堆垛高度Lc在500 ℃前逐步增大,在500 ℃时达到最大(Lc=31.1 Å),随后由于半焦进一步热解缩聚,使Lc逐步减小,在1 000 ℃时达到最低点(Lc=15.4 Å),超过1 000 ℃后又开始增大。与Lc的变化趋势相同,堆垛的石墨烯层数N从原始沥青的2.66层增加到500 ℃的约9.05层,随后减小到1 000 ℃的4.55层,超过1 000 ℃后又开始增大。由于500 ℃前样品仍处于沥青态,所以此阶段微晶的石墨烯层间距a3都较大,约为3.50 Å。当在500 ℃变为半焦后,a3迅速减小至3.44 Å。随后温度升高,a3在1 000 ℃达到最小(a3=3.39 Å),1 000 ℃后又开始增大,这表明焦炭经历了收缩再膨胀过程。通过CarbX软件拟合样品的XRD数据,除了可得到样品炭微晶的主要尺寸(La,Lc,N,a3)信息外,还可获得这些参数的分散性(ka,kc,σ3,ε3)以及堆垛的取向性(q)、均匀性(η)和无序碳含量(cun)等信息,有利于深入了解样品的微观结构,有助于优质针状焦的生产。  相似文献   

3.
煤是一种短程有序、长程无序,且随着煤化程度的增加有序性增强、具有微晶或类晶态结构的沉积有机岩。在成煤过程中,地质构造的破坏作用使得煤发生不同程度的变形变质,引起煤的化学组成、微观结构发生变化,形成了不同煤体结构的构造煤。为了揭示构造破坏作用下,煤的微晶结构的变化特征,采用有机溶剂萃取的方法,对不同煤体结构的贫煤、气煤样进行了萃取。借助于X射线衍射(XRD)测试结果,探讨了煤样萃取前后的微晶结构的变化规律。研究发现:在溶剂萃取作用下,构造煤的萃取率所呈现的规律性变化并不因溶剂的种类、煤级的变化而改变,表现为溶剂萃取率均随着煤体破坏程度的增强而增大。室温条件下,溶剂的萃取并不足以改变高、低阶煤的微晶结构参数的对比关系,溶剂萃取前后均表现为贫煤的芳香层间距d002小于气煤,堆砌度Lc和芳香层数N大于气煤。进一步研究发现构造的破坏作用下,萃取后d002逐渐减小,Lc增大,而由于煤级的影响,以及溶剂的种类和渗入强弱不同,延展度La并没有表现出明显的规律性。  相似文献   

4.
优化光谱指数的露天煤矿区土壤重金属含量估算   总被引:1,自引:0,他引:1  
光谱学提供了对土壤中许多元素进行定量分析和快速无损检测的方法。可见光和近红外反射光谱(Vis-NIR)为研究土壤重金属污染提供了一个有用的工具。于新疆准东露天煤矿区采集51个0~10 cm深度的土壤样品,在实验室中分别测定样品的有机质(SOM)含量、重金属砷(As)含量与高光谱;使用基于JAVA语言自主开发的两波段组合软件V1.0(No: 2018R11S177501)计算不同高光谱数据变换形式(原始反射率(R),倒数(1/R),对数(lgR)和平方根()下Vis-NIR区域(400~2 400 nm)所有两波段组合得到的优化光谱指数(NPDI)与As的相关性,在最优光谱指数(|r|≥0.73和p=0.001)中通过变量重要性准则(VIP)进一步筛选VIP≥1的指数作为模型自变量,基于地理加权回归(GWR)模型估算As含量并使用四个交叉验证度量标准:相对分析误差(RPD),决定系数(R2),均方根误差(RMSE)和最小信息准则(ACI)评价模型精度,从而探讨优化光谱指数方法应用于高光谱检测露天煤矿区土壤重金属砷含量的可行性。结果表明:(1)研究区As含量离散度较高,所有样品中SOM含量均小于2%,且As含量与SOM含量在0.01的显著性水平上无显著相关性(|r|=0.113)。(2)As含量与单波段光谱反射率的相关性很低(|r|≤0.228),而通过R,1/R,lgR计算的NPDIs与As含量的相关性在近红外(NIR,780~1 100 nm)和短波红外(SWIR,1 100~1 935 nm)光谱中发现最高的相关系数和最低的p值(|r|≥0.73和p=0.001),在长波近红外(LW-NIR)区域基于R形成的NPDIs与As含量相关性最高(|r|=0.74)。(3)VIP方法分别筛选NPDIR(1 417/1 246),NPDI1/R(799/953,825/947)、NPDIsqrt-R(1 023/1 257,1 008/1 249,1 021/1 250,1 020/1 247)和NPDIlgR(801/953,811/953,817/951,825/947,828/945)为GWR模型自变量。(4)从4个预测模型的表现可以看出,Model-a(R)与其他三个模型(Model-b(1/R),Model-c()和Model-d(lgR))相比,它具有最高的验证系数(R2=0.831,RMSE=4.912 μg·g-1,RPD=2.321)和最低的最小信息准则值(AIC=179.96)。优化光谱指数NPDIR(1 417/1 246)有助于快速准确地估算As含量,为进一步获取地表土壤重金属污染分布信息提供理论支持和应用参考,促进露天煤矿区环境污染快速有效调查和生态可持续发展。  相似文献   

5.
通过磷酸(H3PO4)和焦磷酸(H4P2O7)对生物炭改性能够使其更适于农业应用。探明H3PO4和H4P2O7改性生物炭的P赋存形态与结合方式,将有助于揭示其表面P的生物有效性。以麦秆生物炭(WBC)与棉秆生物炭(CBC)为原料,分别通过H3PO4和H4P2O7制备了H3PO4改性生物炭(P-WBC和P-CBC)和H4P2O7改性生物炭(PA-WBC和PA-CBC)。利用拉曼光谱(Raman)与扫描电镜能谱(SEM-EDS)对改性生物炭结构与P分布变化进行表征,采用傅里叶红外光谱(FTIR)和X射线光电子能谱(XPS)探究改性生物炭表面P结合方式,并结合Hedley磷分级方法与可见分光光度法,定量分析改性前后生物炭中P形态及含量变化。结果表明,H3PO4和H4P2O7改性后生物炭IG/ID值增大,石墨化结构增强,形成了含P颗粒状结构。H3PO4和H4P2O7改性促进了生物炭表面羧基(—COOH)、P—O—P和P—H等酸性官能团与含P基团的形成,且H3PO4改性生物炭和H4P2O7改性生物炭表面官能团种类相似。XPS结果显示,与WBC和CBC相比,改性处理中的O(1s)峰相对含量显著增加了13.15%~32.44%,P(2s)峰相对含量显著增加了18.54%~27.02%(p<0.05)。反褶积分峰将P(2s)与O(1s)分为C—P—O,C—O—P,OPO,CO与(或)PO,C—O—C与(或)P—O—C和P—O—P六类。较H3PO4改性而言,H4P2O7改性能够促进更多C—O—P,OPO,C—O—C与(或)P—O—C和P—O—P键的形成。改性也使得生物炭中总P含量显著增加,且PA-WBC和PA-CBC中P含量显著高于P-WBC和P-CBC。与WBC和CBC相比,改性处理中活性P含量显著提高2.36~14.77 g·kg-1,稳定态P含量显著降低0.06~0.17 g·kg-1(p<0.05)。与P-WBC和P-CBC相比,PA-WBC和PA-CBC的活性P、中等活性P分别显著增加了5.27~15.66和0.53~0.64 g·kg-1, 稳定态P含量减少了0.03~0.34 g·kg-1(p<0.05)。H3PO4和H4P2O7改性改变了P在生物炭表面的结合方式,同时增加了P的活性。H3PO4和H4P2O7改性生物炭间,不同形态P含量和结合方式的差异对进一步探究P的生物有效性具有重要意义。  相似文献   

6.
硅酸盐水泥和铝酸盐水泥是广泛应用的无机注浆材料,混合使用这两种材料可制备凝结时间短及强度高的胶凝材料。然而,在富水条件下(水灰比大于1),添加适量二水石膏所制备的硅酸盐-铝酸盐水泥基材料水化后期发生强度衰减。为了改善硅酸盐-铝酸盐水泥基富水材料的强度性能,将一定量的硅酸钠掺入硅酸盐水泥-铝酸盐水泥-二水石膏三元体系中。采用RMT-150力学试验系统测试含不同硅酸钠掺入量的硅酸盐-铝酸盐水泥基富水材料的强度,分析其强度演化特性及掺入硅酸钠对其强度的影响;采用扫描电镜(SEM),X射线衍射(XRD)及傅里叶变换红外光谱(FTIR)对不同硅酸钠掺量的富水材料微观结构进行表征,分析其微观形貌、物相的变化规律,进而揭示该富水材料的强度演化机制。强度试验结果显示,不掺硅酸钠的富水材料早期强度低,并且后期强度发生衰减;而硅酸钠的掺入有助于提高硅酸盐-铝酸盐水泥基富水材料的早期强度,并且在一定程度上减少材料固化后的后期强度衰减量,当硅酸钠掺入量高于3%以上时,可以有效控制该富水材料后期强度的衰减。SEM,XRD及FTIR研究结果表明:不掺硅酸钠的硅酸盐-铝酸盐水泥基富水材料水化14 d时,检测到所属六方晶系的物相CAH10 及C2AH8转变为具有立方晶系结构的C3AH6,这种晶型转变是导致该富水材料强度衰减的原因。相比不掺硅酸钠的富水材料,当硅酸钠掺入1%时,富水材料水化3 d生成更多的水化硅酸钙(C-S-H)凝胶,这有利于提高富水材料的早期强度;水化14 d后,XRD结果显示,在d=11.75, 6.24 Å出现C2ASH8的衍射峰,而直至28 d才检测到C3AH6d=5.16, 3.18 Å)衍射峰,并且C3AH6衍射强度较不掺硅酸钠的材料低,FTIR谱3 643 cm-1处出现的振动带证实了这一发现。这说明掺入1%硅酸钠促使六方晶系(CAH10 及C2AH8)转变为C2ASH8,进而抑制了CAH10及C2AH8向C3AH6的转变。但是,添加1%的硅酸钠却不足以完全抑制富水材料水化后期的晶型转变,因此富水材料水化后期仍会发生强度衰减。当硅酸钠掺入量升至4%时,硅酸盐-铝酸盐水泥基富水材料中的C2ASH8生成量显著增大,并且水化28 d后未检测到C3AH6,表明富水材料内的晶型转变完全得以抑制,材料水化后期强度衰减得到有效控制。  相似文献   

7.
针对基于固定特征波长的植被指数不能适用于多个生育期叶绿素含量的诊断这一问题,研究优化提出一种基于双波长计算光谱覆盖面积的叶绿素诊断植被指数,用于稳健地诊断多生育期的营养。以拔节期、孕穗期和扬花期的冬小麦为研究对象,采集其325~1 075 nm范围的冠层反射光谱,测定采样样本的叶绿素含量。采用小波去噪和多元散射校正算法对光谱数据进行预处理。通过相关性分析,确定生育期特征波长的迁移范围,进而提出了基于光谱覆盖面积的冬小麦叶绿素含量光谱诊断参数(modified normalized area over reflectance curve, MNAOC)。以信噪比(SNR)和平滑度指标(S)进行综合评价,小波去噪函数的最佳参数为(“sqtwolog”,“mln”,“3”,“db5”)。相关性分析结果表明,生育期特征波段的迁移范围为(700 nm,723 nm)。在分析MNAOC指数对叶绿素含量诊断分辨率的基础上,以0.5 mg·L-1的分辨率建立一元线性回归模型的结果为:拔节期R2c=0.840 1,R2v=0.823 7;孕穗期R2c=0.865 5,R2v=0.817 4;扬花期R2c=0.833 8,R2v=0.807 6。与ratio vegetation index(RVI)等5种双波长植被指数对比表明,由于700和723 nm计算的光谱面积包含了由于生育期导致的光谱动态迁移特征,使得MNAOC指数在模型精度上和多个生育期的普适性上,都优于其他双波长代数运算植被指数,为大田环境冬小麦生育期叶绿素含量诊断提供支持。  相似文献   

8.
尿素是我国主要的氮肥品种,但其活性高,在土壤中水解后极易通过挥发和淋洗损失,利用率低,造成养分资源浪费并污染环境。使用有机酸对尿素进行改性可以延缓尿素分解,提高尿素利用率,但有机酸与尿素的结合方式及其增效机理尚不明确。研究中选取柠檬酸和水杨酸两种小分子有机酸作为添加剂,分别加入到熔融尿素中,获得柠檬酸尿素与水杨酸尿素。利用傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)分析材料的化学结构,利用液相色谱-质谱联用(LC-MS)研究材料的物质组成及相对分子质量,尝试通过以上多谱学的分析方法,明晰两种有机酸与尿素的结合方式。结果表明,柠檬酸和水杨酸与尿素结合后,FTIR在3 348 cm-1处产生了加强的伯胺振动峰,推测小分子有机酸与尿素在伯胺处发生了反应。XPS C(1s)和N(1s)图谱分别出现新的碳结构(-CX)和新的氮结构(-NX),降低了柠檬酸/水杨酸中原有羧基碳结构和尿素中酰胺基氮结构的相对含量,O(1s)图谱出现C-OH化学键断裂,表明,柠檬酸/水杨酸的羧基与尿素的酰胺基相互作用生成了新的物质。LC-MS分析发现柠檬酸尿素/水杨酸尿素中的新物质可能是柠檬酸/水杨酸的羧基与尿素的酰胺基发生脱水反应,生成含有O═CNHC(O)NH2结构的物质。因此,利用光谱分析等手段明晰了有机酸与尿素的结合方式与结合产物特征,为有机高分子与尿素反应机理的研究提供了理论依据,为后续高效肥料增效剂的筛选提供了方向。  相似文献   

9.
采用多激发波长(325,405,514,633和785 nm)以及显微拉曼面扫描技术对不同芳香层片平均堆砌层数的煤系石墨及其表面石墨化均匀程度进行表征。结果表明:对无序石墨,石墨微晶的尺寸较小并任意取向,随着平均堆砌度及堆砌层数增加,石墨微晶边缘的拉曼光谱特征显现。在无序结构向有序转化的同时,石墨微晶缺陷逐渐消亡,拉曼光谱一级模中D3、D4峰逐渐不显著或消失,但是其倍频峰均微弱出现,尤其2D1峰强度逐渐增大。将ID1/ID2参数的含义进一步引申为缺陷类型及平均定向性,且无烟煤的ID1/ID2极大,随着石墨微晶尺寸增大(d002<0.344 0 nm),至三维有序结构的石墨时ID1/ID2最小。在不同激发波长下G峰半高宽总是随着无序度的减小而减小,D1峰和2D1峰等均显示较强的色散效应,各峰强度随激发光能量的增大而增大,在紫外激发下,D1和G峰峰位差显著小于可见光激发。随激发波长的增加,D1峰向着低波数方向移动,2D1峰色散约为D1峰的两倍。高煤级煤石墨化过程中,非定向的芳香碳经历一系列的物理、化学结构演变产生各种中间相态,如残留煤岩显微组分(变镜质组和变惰质组)和新生的石墨组分(热解炭等)共存,因此采用(IG-ID1)/(PG-D1)≥0.3,ID1/IG<0.4,AD1/A(D1+G)<0.45等作为石墨和半石墨的界线,利用平面扫描区域成像来表征样品石墨化的表面均匀程度,取频数分布置信区间≤0.9来综合判定样品表面石墨化度为84.16%~86.40%,平均为85.49%,与利用X射线衍射(XRD)参数估计的石墨化度相当。  相似文献   

10.
王冠仕  林彦明  赵亚丽  姜振益  张晓东 《物理学报》2018,67(23):233101-233101
在密度泛函理论的基础上,系统地研究了Cu/N(共)掺杂的TiO2/MoS2异质结体系的几何结构、电子结构和光学性质.计算发现,TiO2/MoS2异质结的带隙相比于纯的TiO2(101)表面明显变小,Cu/N(共)掺杂TiO2/MoS2异质结体系的禁带宽度也明显地减小,这导致光子激发能量的降低和光吸收能力的提高.通过计算Cu/N(共)掺杂TiO2/MoS2的差分电荷密度,发现光生电子与空穴积累在掺杂后的TiO2(101)表面和单层MoS2之间,这表明掺杂杂质体系可以有效地抑制光生电子-空穴对的复合.此外,我们计算了在不同压力下TiO2/MoS2异质结的几何、电子和光学性质,发现适当增加压力可以有效提高异质结的光吸收性能.本文结果表明,Cu/N(共)掺杂TiO2/MoS2异质结和对TiO2/MoS2异质结加压都能有效地提高材料的光学性能.  相似文献   

11.
煤结构是煤化学的重要研究内容,优质肥煤在我国属于稀缺炼焦煤种。碳是煤结构的基本骨架,是构成煤中有机质及形成焦炭的主要元素。研究高硫肥煤中的碳结构对认知肥煤结构与性质,提高低品质炼焦煤利用效率具有重要意义。采集并制备山东东滩(DT)和山西水峪(SY)、霍州(HZ)、高阳(GY)四个矿区的肥煤样品,利用X-射线衍射(XRD)、傅里叶变换红外光谱(FTIR)以及 X-射线光电子能谱(XPS)对煤中碳结构进行谱学表征和联合解析,结合煤质分析结果,计算不同肥煤样品的碳结构参数。研究结果表明:SY,HZ,GY和DT四种肥煤的芳香度fa-XRD依次增大,芳香层片的延展度Lc和堆垛高度La依次减小,山西煤的芳香碳结构层片在排列规整度和芳香环缩合程度上强于东滩煤。DT和GY煤中芳香烃结构主要以苯环五取代、苯环四取代和苯环三取代形式存在,SY与HZ煤中芳香结构以苯环二取代和苯环四取代为主。DT和GY煤含有较多的支链和较高的芳环缩合度。四种肥煤中脂肪结构均是以亚甲基为主,DT,SY,HZ和GY煤的亚甲基占脂肪结构的比例分别为46.27%,48.89%,44.21%和41.85%,煤中含有较多的烷基侧链。GY与DT煤中甲基含量略高于次甲基,SY和HZ煤则相反,这主要与不同煤样在成烃期间长脂肪族结构发生断裂的程度有关。SY,HZ,GY和DT煤的芳碳率分别为0.83,0.81,0.74和0.68,芳氢率分别为0.51,0.43,0.34和0.29,煤中芳构化程度依次减小,芳香环缩合度依次升高。DT和HZ煤的氧化程度较高,DT煤含有较多的C-O结构,判断DT煤中存在较多不易被热分解或不易起化学反应的非活性氧。  相似文献   

12.
传统拉曼光谱只能探测样品的表层信息,或者只能穿透透明的表层探测样品内部,对多层不透明或不透明包装的样品检测则不适用了,比如搜索隐蔽的爆炸物、识别有包装的假药、无损检测骨骼疾病等。空间偏移拉曼光谱(SORS)技术是一种新型光谱检测技术,能够非侵入不透明包装或表层直接获得样品内部深层特征信息,这一技术的出现解决了上述的难题。首先详细介绍了SORS技术的工作原理:其根本原理在于光子迁移理论,其系统激光光源的入射焦点与光谱系统中收集透镜的焦点在待测样品表层空间上偏移一定的距离ΔS。当激光入射到待测样品表层时,表层样品被激发或散射出宽带荧光,其中有一部分散射光将到达样品内部,样品内部深层处产生的拉曼散射光子相比于样品表层的光子在散射过程中更易于横向迁移,经多次散射后返回样品表层被光谱仪器接收系统收集。到达样品内部不同深度ΔH的散射光返回表层后的位置距离激光光源入射点在样品表层上有不同的偏移距离ΔS。当空间偏移距离ΔS=0时,激光光源入射点与拉曼光谱收集点重合,此处激发的光子密度最大,系统收集到的拉曼光谱信号大部分来自样品表层,样品深层拉曼信号被淹没;当空间偏移距离ΔS≠0时,光谱仪器收集到的拉曼光谱信号中来自表层的信号衰减很快,来自样品深层的信号衰减较慢,使得更深层的拉曼散射光子比重变大,从而实现光谱分离,再结合多元数据分析方法可以获得样品内部不同深层次的拉曼光谱,即空间偏移拉曼光谱。该技术具有很好抑制表层物质拉曼光谱和荧光光谱干扰的能力,特别适用于隐蔽在不透明包装材料下的物质拉曼光谱的提取,从而快速、非侵入地对目标物成分进行鉴定。其次介绍了SORS技术的特点。SORS技术是拉曼光谱的衍生技术,具备拉曼光谱技术的制样简单、水分干扰小、样品消耗量小、灵敏度高等全部优点,除此之外,有效抑制荧光、深层检测、非侵入无损检测、远距离检测等特点,这些特点有效提高了拉曼光谱强度,降低用户的检测和生产成本以及提高检测人员的人身安全。同时概述并对比了SORS技术现有的三种工作方式:标准SORS、逆SORS和倾斜SORS。标准SORS技术可进行远距离非接触测量,逆SORS较之标准SORS具有更高的灵敏度和抗光谱扭曲的潜力,而且入射的有效光照面和空间偏移距离ΔS是可控的,避免了样品过热;倾斜SORS具有较高的检测灵敏度,而且实验装置容易实现。然后在大量调研文献的基础上综述了近些年来SORS技术结合其他技术在化工生产、安检、生物医学、考古艺术、食品安全、稽查打假以及国防安全等多个领域的国内外发展和应用。最后指出了SORS技术目前存在的问题并展望了该技术未来的发展前景。  相似文献   

13.
共聚焦X射线荧光技术是一种无损的三维光谱分析技术,在材料,生物,矿物样品分析,考古,证物溯源等领域具有广泛应用。共聚焦X射线荧光谱仪的核心部件为两个多毛细管X光透镜。一个为多毛细管X光会聚透镜(PFXRL),其存在一后焦点,作用是把X光管所发出的发散X射线会聚成几十微米大小的高增益焦斑。另一透镜为多毛细管X光平行束透镜(PPXRL),其存在一几十微米大小前焦点,置于X射线能量探测器前端,其作用是接收特定区域的X射线荧光信号。在共聚焦X射线荧光谱仪中,PFXRL的后焦点与PPXRL的前焦点重合,所形成的区域称作探测微元。只有置于探测微元区域的样品能够被谱仪检测到,使样品与探测微元相对移动,逐点扫描,便能够对样品进行三维无损的X射线分析。探测微元的尺寸决定共聚焦X射线荧光谱仪的空间分辨率,因此精确测量谱仪的探测微元的尺寸是非常重要的。如图1所示,谱仪探测微元可以近似为椭球体,其尺寸可以用水平方向分辨率X, Y,和深度分辨率Z表示。目前,常采用金属细丝或金属薄膜通过刀口扫描的方法测量谱仪探测微元尺寸。为了精确的从三个维度测量探测微元尺寸,金属细丝直径要小于探测微元尺寸。金属细丝和探测微元都是数十微米级别的尺寸大小,很难把金属靠近探测微元。为了得到探测微元在不同X射线能量下尺寸变化曲线,要采用多种金属细丝测量。采用单个金属细丝依次测量比较耗费时间。采用金属薄膜可以很方便地测量探测微元的深度分辨率Z,但是当测量水平分辨率X, Y时,难以准确测量。为了解决以上谱仪探测微元测量中存在的问题,本文提出采用多种金属丝平行粘贴在硬纸片上作为样品用于快速测量探测微元尺寸。附有金属细丝的硬纸片靠近谱仪探测微元,可以将探测微元置于硬纸片所在平面。由于硬纸片与金属细丝在同一水平面,在谱仪摄像头的协助下,可以把金属细丝迅速的靠近探测微元。靠近探测微元后,在全自动三维样品台的协助下,金属细丝沿两个方向对探测微元分别进行一次二维扫描。通过对二维扫描数据的处理便可以获得探测微元尺寸随入射X射线能量变化曲线。采用此方法对实验室所搭建的共聚焦X射线荧光谱仪的探测微元进行了测量。  相似文献   

14.
搭建了可用于生物医学检测的小型近红外拉曼光谱仪。通过理论计算,几何光路设计,完成了系统组装。有别于传统反射式准直结构:(1)本光谱仪色散系统采用透射式准直的方法,将散射光投射到光栅上进行色散;(2)经二向色镜分光,采用物镜对入射光会聚和散射光收集,设计了与色散系统入射狭缝相匹配(共焦面)的外光路系统,进而有效收集拉曼信号和去除杂散光;(3)实现了高分辨率(3 cm-1)、高重复性和高灵敏度光谱检测,检测范围500~2 200 cm-1(785 nm激发);(4)小型化设计,整个系统尺寸约240 mm×200 mm×130 mm,自由度高。将此自开发小型拉曼光谱仪应用于葡萄糖和膝关节软骨的拉曼光谱测试,获得了与大型商业拉曼光谱仪相媲美的结果,验证了该光谱仪具有高分辨率,高重复性和高灵敏度的优越性能,可灵活地应用于生物医学等多领域的研究。  相似文献   

15.
空间偏移拉曼光谱(SORS)能够准确、快速、无损检测多层混浊介质样品深层生化构成信息。该研究通过搭建集成化逆向SORS光谱分析装置,在实现逆向SORS和背散射式拉曼光谱两种不同的光谱检测模式的基础上,检测与分析了不同空间偏移量(Δs)条件下双/三层组织模型内的深层拉曼光谱信息,并根据几何光学理论和投影测量原理,量化标定了Δs与锥透镜空间位置之间的关系,这为精确控制光谱检测条件提供了保障。为了验证该装置的检测能力,采用由羊肩胛骨/对乙酰氨基酚组成的双层模型和猪皮/硅橡胶/对乙酰氨基酚组成的三层模型,获得不同Δs条件下包含样品表层和深层信息的混合光谱。并进一步对该混合光谱进行面积归一化处理,观察到随着Δs的增大样品表层的拉曼贡献逐渐减小,而第二层以及第三层的拉曼贡献逐渐增大的现象。在此基础上,通过选择模型中每层物质的拉曼特征峰计算其相对拉曼强度,分析研究了相对拉曼强度、空间偏移量与样品厚度三者之间关系,即当Δs增大时相对拉曼强度比值随之增加,这清晰地表明深层物质的拉曼强度增加。然而,在同一Δs条件下,相对拉曼强度随着表层物质厚度的增大而减小。以上实验结果表明,我们搭建的集成化逆向SORS光谱分析装置可从深度达8 mm的生物模型下获取光谱信息,并证明了该装置在经皮无损探测方面的应用价值。  相似文献   

16.
Vapor grown carbon nanofibers have been extensively manufactured and investigated in recent years. In this study commercially available vapor grown carbon nanofibers subjected to different processing and post processing conditions were studied employing high resolution TEM images. The analysis showed that the fibers consist primarily of conical nanofibers, but can contain a significant amount of bamboo nanofibers. Most conical nanofibers were found to consist of an ordered inner layer and a disordered outer layer, with the cone angle distribution of the inner layers indicating that these cannot have a stacked cone structure but are compatible with a cone-helix structure. Fibers that have been heat treated to temperatures above 1,500 °C undergo a structural transformation with the ordered inner layers changing from a cone-helix structure to a highly ordered multiwall stacked cone structure. The bamboo nanofibers were found to have a tapered multiwall nanotube structure for the wall and a multishell fullerene structure for the cap of each segment, surrounded by a disordered outer layer. When these fibers are heat treated the disordered outer layers transform to an ordered multiwall nanotube structure and merge with the wall of each segment. The end caps of each segment transform from a smooth multiwall fullerene structure to one consisting of disjointed graphene planes. A reaction-diffusion mechanism is proposed to explain the growth and structure of the bamboo nanofibers.  相似文献   

17.
为明确不同煤种大分子结构特征的异同,采用傅里叶变换红外光谱(FTIR)和拉曼光谱(Raman)分析技术,对五种烟煤(HY,HJ,BL,DJ和HK)进行系统表征,为后续煤及类煤材料结构和性能的研究提供可靠指导。在FTIR光谱特征曲线上,波数3 200~3 600 cm-1范围有明显的吸收区,其中样品HJ相较于其他4种样品更明显,主要是由于-OH官能团和N-H结构振动引起,但该波段容易受到自由水或结晶水的影响,从而造成判断误差。在2 923 cm-1处可以观察到CH2反对称伸缩振动峰值都明显高于其对称伸缩振动,产生这一现象的原因是烟煤中存在大量脂肪族CH2碳链结构,后续将其液化加工再应用的潜力较大。而在1 000~1 800 cm-1的含氧官能团波数范围内,主要包含了羟基(醇羟基和酚羟基)、羧基、羰基等。为了更清晰的表征煤结构,定量分析了煤的表观芳香度fa(FTIR),(R/C)u,Hal/H,Aar/Aal和H/C原子比之间的关系,可以看出随着煤质水平的提高,煤中芳香族氢含量增加,脂肪族氢含量降低。另外比较了各个结构参数发现fa(FTIR),(R/C)u和H/C原子比之间存在线性关系,能够更加准确的表征煤阶。Raman光谱特征曲线通过Origin 2018进行分峰拟合,采用去卷积方法将频谱划分为十个峰,分别为G,GR,VL,VR,D,S,GL,SL,SR和R。对比不同波段峰面积比例及主峰半高宽和H/C原子比的关系,发现随着H/C原子比的增加,AD/AG值总体呈下降趋势。从而说明煤样基本结构中单元核的芳香环数量随着煤化作用及其石墨化程度的增加而增加,该结果与FTIR光谱分析一致。通过上述研究结果的对比可证明FTIR和Raman光谱技术是煤中大分子结构特征研究的可靠方法。最后基于两种分析技术提供的结构参数,建立了简单的煤分子模型,为煤化学研究中基础分子构建提供参考。  相似文献   

18.
使用 ANSYS FLUENT 软件和 RNG k-ε 湍流模型分别研究了十字形、内十字形和花形结构的螺旋喷 嘴内部流动特性和耦合面换热特性。模拟结果研究表明,螺旋角 θ 越小喷嘴出口速度越高,喷出的水流更集中, 水流运动轨迹越清晰且规律越明显。同一工况下,θ=30°的花形喷嘴的换热效率和换热均匀性均优于其余两种喷嘴的值;耦合面努塞尔数 Nu 最大值会随着雷诺数 Re 不断增加而逐渐远离射流中心处(r/dj=0,dj 为喷嘴当量直径); 随着靶距 H 逐渐增大,Nu 逐渐减小,旋流效果逐渐减弱。当 H=2dj、4dj 时,Nu 最大值位于 r/dj=1 处;当 H=6dj 时,Nu 最大值位于射流中心处。  相似文献   

19.
Although Raman spectra reveal, as a signature of double‐walled carbon nanotubes (DWCNTs), two radial breathing mode (RBM) lines associated with the inner and outer tubes, the specification of their nature as metallic or semiconducting remains a topic for debate. Investigating the spectral range of the RBM lines, we present a new procedure of the indexing of the semiconducting or metallic nature of the inner and outer shell that forms the DWCNT. The procedure exploits the difference between the intensities of recorded anti‐Stokes Raman spectrum and the anti‐Stokes spectrum calculated by applying the Boltzmann formulae to the recorded Stokes spectrum. The results indicate that the two spectra do not coincide with what should happen in a normal Raman process, namely, that there are RBM lines of the same intensity in both spectra, as well as RBM lines of higher intensity that are observed in the calculated spectrum. This discrepancy results from the surface‐enhanced Raman scattering mechanism that operates differently on metallic or semiconducting nanotubes. In this context, the analysis of the RBM spectrum can reveal pairs of lines associated with the inner/outer shell structure of DWCNT, and when the intensities between the recorded and calculated spectra coincide, the nanotube is metallic; otherwise, the nanotube is semiconducting. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号