首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
王广海  张跃 《中国物理 B》2010,19(12):127803-127803
This paper reports that heat insulating property of infrared reflective coatings is obtained through the use of pigments which diffuse near-infrared thermal radiation.Suitable structure and size distribution of pigments would attain maximum diffuse infrared radiation and reduce the pigment volume concentration required.The optimum structure and size range of pigments for reflective infrared coatings are studied by using Kubelka-Munk theory,Mie model and independent scattering approximation.Taking titania particle as the pigment embedded in an inorganic coating,the computational results show that core-shell particles present excellent scattering ability,more so than solid and hollow spherical particles.The optimum radius range of core-shell particles is around 0.3 ~ 1.6 μm.Furthermore,the influence of shell thickness on optical parameters of the coating is also obvious and the optimal thickness of shell is 100-300 nm.  相似文献   

2.
We report a new method for measuring particle size distribution (PSD) and refractive index of the top layer in a two-layer tissue phantom simulated epithelium tissue by varying the azimuth angle of incident linearly polarized light. The polarization gating technique is used to decouple the single and multiple scattering components in the returned signal. The theoretical model based on Mie theory is presented and a nonlinear inversion method - floating genetic algorithm - is applied to inverting the azimuth dependence of component of polarization light backscattered. The experiment results demonstrate that the size distribution and refractive index of the scatters of the top layer can be determined by measuring and analyzing the differential signal of the parallel and perpendicular components from a two-layer tissue phantom. The method implies to detect precancerous changes in human epithelial tissue.  相似文献   

3.
A new fabrication technology for three-dimensionally buried silica on silicon optical waveguide based on deep etching and thermal oxidation is presented. Using this method, a silicon layer is left at the side of waveguide. The stress distribution and effective refractive index are calculated by using finite element method and finite different beam propagation method, respectively. The results indicate that the stress of silica on silicon optical waveguide fabricated by this method can be matched in parallel and vertical directions and stress birefringence can be effectively reduced due to the side-silicon layer.  相似文献   

4.
Deep sub-wavelength metamaterials are the key to the further development of practical metamaterials with small volumes and broadband properties. We propose to reduce the electrical sizes of metamaterials down to more sub-wavelength scales by lowering the plasma frequencies of metallic wires. The theoretical model is firstly established by analyzing the plasma frequency of continuous thin wires. By introducing more inductance elements, the effective electron mass can be enhanced drastically, leading to significantly lowered plasma frequencies. Based on this theory, we demonstrate that both the electric and the magnetic plasma frequencies of metamaterials can be lowered significantly and thus the electrical sizes of metamaterials can be reduced to more sub-wavelength scales. This provides an efficient route to deep sub-wavelength metamaterials and will give rigorous impetus for the further development of practical metamaterials.  相似文献   

5.
Study of self—focusing in underwater waveguide by time reversal method   总被引:1,自引:0,他引:1  
Acoustic wave time reversal self-focusing in underwater waveguide is studied.The acoustic wave time reversal is theoretically and experimentally investigated in a half-infinitefluid medium and a shallow fluid layer placed on a hard half-infinite solid medium,respectively,The ray approach method is adopted to study the far field of the acoustic field in theory,and the ultrasonic experiments have been carried out in laboratory to model the underwater waveguide.It is shown by theoretical and experimental results that the focusing gain can be improved by 12dB or more.  相似文献   

6.
We establish an equivalent cascaded semiconductor optical amplifier system model to analyze the characteristics of the double loop optical buffer (DLOB). The theoretical analysis finds that the performance of the DLOB can be improved by inserted amplifying process in an interval of some cycles. The experiment demonstrates that the buffered cycles can be improved from 20 to 50 and the bit error rate is less than 10-9 by inserting amplifying process in an interval of about 10 cycles.  相似文献   

7.
The modified analytic embedded atom method (MAEAM) model and the anharmonic theory are used to study the bulk modulus of fcc A1 metal. The result shows that the bulk modulus can be described by a quadratic function of temperature. The result is in good agreement with the experimental data and theoretical results calculated by the first principle calculation etc. This outcome indicates that the temperature dependence of the bulk modulus for f cc A1 metal can be academically studied with the MAEAM model combining with the anharmonic theory.  相似文献   

8.
To achieve radar and infrared stealth, an infrared stealth layer is usually added to the radar absorbing material(RAM) of stealth aircraft. By analyzing the millimeter-wave(MMW) emissivities of three stealth materials, this Letter investigates the impact of the added infrared stealth layer on the originally "hot" MMW emission of RAM. The theoretical and measured results indicate that, compared with the monolayer RAM, the MMW emission of the bilayer material is still strong and its emissivity is reduced by 0.1–0.2 at almost every incident angle.The results partially demonstrate the feasibility of detecting stealth aircraft coated with this bilayer stealth material.  相似文献   

9.
We numerically study the multi-band absorption properties and near-field enhancement inside the microcavity based on the interference theory. The compact single unit cell consists of a gold square patch placed on the top of a metallic ground plane, separated by a dielectric layer. At the normal incidence of electromagnetic radiation, four bands of a maximum absorption of 98% are accomplished by appropriate sizes of the square patch. Furthermore, we demonstrate that the four bands, which are corresponding to the fundamental mode and higher modes of the standing wave, can be readily tuned in the mid-infrared region and associated with the near-field enhancement in the cuboid mierocavity. Since chemical and biological fingerprints of the common functional groups can be found in the mid-infrared region, we may readily tune the multi-bands of interest in the mid-infrared range and identify the molecular stretches of groups. Moreover, the proposed structure is insensitive to the polarization of the incident wave due to the complete rotational symmetry (C4 symmetry). The unique properties of the optical metamaterial indicate that this approach is a promising strategy for surface-enhanced infrared absorption spectroscopy and for the tracking of characteristic molecular vibrational modes  相似文献   

10.
史哲  杨阳  甘霖  李志远 《中国物理 B》2016,25(5):57803-057803
Graphene decorated nanomaterials and nanostructures can potentially be used in military and medical science applications. In this article, we study the optical properties of a graphene wrapping silica core–shell spherical nanoparticle under illumination of external light by using the Mie theory. We find that the nanoparticle can exhibit surface plasmon resonance(SPR) that can be broadly tuned from mid infrared to near infrared via simply changing the geometric parameters. A simplified equivalent dielectric permittivity model is developed to better understand the physics of SPR, and the calculation results agree well qualitatively with the rigorous Mie theory. Both calculations suggest that a small radius of graphene wrapping nanoparticle with high Fermi level could move the SPR wavelength of graphene into the near infrared regime.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号