首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
胡佳  徐轶君  叶超 《物理学报》2010,59(4):2661-2665
研究了用于SiCOH 低介电常数薄膜刻蚀的CHF3气体在1356 MHz/2 MHz,2712 MHz/2 MHz和60 MHz/2 MHz双频电容耦合放电时的等离子体性质.发现2 MHz低频源功率的增大主要导致F基团密度的增大;而高频频率从1356,2712增大到60 MHz,导致CF2基团的密度增大和电极之间F基团密度的轴向空间不均匀性增加.根据电子温度的分布规律及离子能量随高频源频率的变化关系,提出CF2基团的产生主要通过电子-中性气体碰撞,而F基团的产生是离子-中性气体碰撞的结果. 关键词: 双频电容耦合放电 3等离子体')" href="#">CHF3等离子体  相似文献   

2.
This paper investigates the effect of O2 plasma treatment on the electric property of Cu/SiCOH low dielectric constant (low-k) film integrated structure. The results show that the leakage current of Cu/SiCOH low-k integrated structure can be reduced obviously at the expense of a slight increase in dielectric constant k of SiCOH films. Bythe Fourier transform infrared (FTIR) analysis on the bonding configurations of SiCOH films treated by O2 plasmar it is found that the decrease of leakage current is related to the increase of Si-O cages originating from the linkage of Si dangling bonds through O, which makes the open pores sealed and reduces the diffusion of Cu to pores.  相似文献   

3.
郝莹莹  孟秀兰  姚福宝  赵国明  王敬  张连珠 《物理学报》2014,63(18):185205-185205
H_2-N_2混合气体电容性耦合射频放电在有机低介电系数材料刻蚀中具潜在研究意义.采用paxticle-incell/Monte Carlo模型模拟了双频(13.56 MHz/27.12 MHz)电压源分别接在结构对称的两个电极上的H_2-N_2容性耦合等离子体特征,研究了其电非对称效应.模拟结果表明,通过调节两谐波间的相位角θ,可以改变其电场、等离子体密度、离子流密度的轴向分布及离子轰击电极的能量分布.当相位角θ为0°时,低频电极(晶片)附近主要离子(H_3~+)的密度最小,离子(H_3~+,H_2~+,H~+)轰击低频电极的流密度及平均能量最高;当θ从0°变化90°时,低频电极的自偏压从-103V到106V近似线性增加,轰击电极的离子流密度变化约±18%,H~+离子轰击低频电极的最大能量约减小2.5倍,轰击电极的平均能量约变化2倍,表明氢离子能量和离子流几乎能独立控制.  相似文献   

4.
In this work, a complex investigation of the film surface composition and nanoscale mechanical properties, i.e. hardness and elastic modulus, of plasma-modified and silica-coated hydrogel thin films was carried out. Plasma treatment was performed in a reactive ion etching chamber (SF6, CHF3) at radio frequency (rf, 13.56 MHz) and in a plasma-enhanced chemical vapor deposition chamber (SiH4/N2, NH3, N2O) at radio frequency and dual frequency (13.56 MHz/100 kHz), respectively. The use of the dual-frequency configuration comprising two power supplies and operated in a switched mode enabled the investigation of the ion-bombardment influence on the polymer properties. For the application in silicon micromachined sensors best results were obtained by using a NH3 or SiH4/N2 low-pressure plasma modification and a silica coating of the sensitive hydrogel film. PACS 81.05.Lg; 81.15.Gh; 81.65.Cf; 81.70.Bt  相似文献   

5.
Theoretical investigation has been carried out on the mechanism, kinetics and thermochemistry of the gas-phase reactions between CHF2CF2OCH2CF3 and OH radical using a new hybrid density functional M06-2X/6-31+G(d,p) and G2(MP2)//M06-2X/6-31+G(d,p) methods. The most stable conformer of CHF2CF2OCH2CF3 is considered in our study and the possible H-abstraction reaction channels are identified. Each reaction channel shows an indirect H-abstraction reaction mechanism via the formation of pre-reactive complex. The rate coefficients are determined for the first time over a wide range of temperature 250–1000 K. At 298 K, the calculated total rate coefficient of kOH = 1.01×10?14 cm3 molecule?1 s?1 is in good agreement with the experimental results. The heats of formation for CHF2CF2OCH2CF3 and CF2CF2OCH2CF3 and CHF2CF2OCHCF3 radicals are estimated to be -1739.25, -1512.93 and -1523.94 kJ mol?1, respectively. The bond dissociation energies of the two C-H bonds are C(-H)F2CF2OCH2CF3: 423.34 kJ mol?1 and CHF2CF2OC(-H)HCF3: 411.87 kJ mol?1. The atmospheric lifetime of CHF2CF2OCH2CF3 is estimated to be around 4.5 years and the 100-year time horizon global warming potentials of CHF2CF2OCH2CF3 relative to CO2 is estimated to be 601.  相似文献   

6.
13 C-selective infrared multiphoton dissociation of CF3CH2Cl has been studied by analyzing the distribution of 13C concentrations of the main products CF2=CHCl, CF2=CH2, CF2=CHF, C2F6, and the trace products CF3CH2CF3 and CF3CH=CHF3. The mechanism mainly concerns the dissociation of energized CF3CH2Cl, the collisional stabilization of excited CF3CH and CF3CH2 and the recombination of the nascent radicals. No significant radical–molecule reactions degrade the intrinsic 13C dissociation selectivity. High 13C production yield and 13C concentration can be attained at a laser fluence of 1.6 J/cm2. Such low fluence can be used to improve focus condition and enhance photon utilization efficiency for practicable 13C separation. Received: 10 March 1998/Revised version: 17 September 1998  相似文献   

7.
The plasma parameters such as electron density, effective electron temperature, plasma potential, and uniformity are investigated in a new dual‐frequency cylindrical inductively coupled plasma (ICP) source operating at two frequencies (2 and 13.56 MHz) and two antennas (a two‐turn high‐frequency antenna and a six‐turn low‐frequency (LF) antenna). It is found that the electron density increases with 2 MHz power, whereas the electron temperature and plasma potential decrease with 2 MHz power at a fixed 13.56 MHz power. Moreover, the plasma uniformity can be improved by adjusting the LF power. These results indicate that a dual‐frequency synergistic discharge in a cylindrical ICP can produce a high‐density, low‐potential, low‐effective‐electron‐temperature, and uniform plasma.  相似文献   

8.
Laser-induced etching of polycrystalline Al2O3TiC material by a tightly-focused cw Ar ion laser has been investigated in a KOH solution with different concentrations. It is found that the KOH concentration can strongly affect the etching quality where low KOH concentration can result in rough and irregular patterns. Laser-induced etching of polycrystalline Al2O3TiC in a KOH solution is found to be a photothermal reaction in which a threshold laser power exists. With an appropriate set of etching parameters, well-defined grooves can be obtained with clean side walls and with an etching rate up to several hundred micrometers per second. The etching behavior is also found to depend on laser scanning direction. It is also found that the grains in the polycrystalline Al2O3TiC material play an important role in the etching dynamics and etching quality. This etching process is believed to be applicable to the formation of a slider surface of magnetic heads in the future.  相似文献   

9.
Variations in the composition and bonds of boron carbon nitride (BCN) film caused due to an oxygen (O2) plasma ashing process are investigated for a low dielectric constant (low-k) insulating film for next generation LSI devices. The O2 plasma treatment is preformed for BCN samples with various C compositions. The etching rate of BCN films with an O2 plasma decreases with increasing C composition. The reaction of O atoms is suppressed in the BCN film with a high C composition. B-N and B-C bonds with lower bond energies are easily broken by the O2 plasma and replaced by the generation of B-O, N-O, and C-O bonds. The B-atom concentration for all samples is decreased significantly by the O2 plasma treatment. Ion bombardment may play a more dominant role than the O-atom reaction in the etching of the BCN film. The existence of C-N bonds with a high bonding energy may suppress etching and incorporation of O atoms.  相似文献   

10.
60 MHz pulsed radio frequency (rf) source power and 2 MHz continuous wave rf bias power, were used for SiO2 etching masked with an amorphous carbon layer (ACL) in an Ar/C4F8/O2 gas mixture, and the effects of the frequency and duty ratio of the 60 MHz pulse rf power on the SiO2 etch characteristics were investigated. With decreasing duty ratio of the 60 MHz pulse rf power, not only the etch rate of SiO2 but also the etch rate of ACL was decreased, however, the etch selectivity of SiO2 over ACL was improved with decreasing the duty ratio. On the other hand, when the pulse frequency was varied at a constant duty ratio, no significant change in the etch rate and etch selectivity of both materials could be observed. The variation of the etch characteristics was believed to be related to the change in the gas dissociation characteristics caused by the change in the average electron temperature for different pulsing conditions. The improvement in the etch selectivity with the decrease of duty ratio, therefore, was related to the decreased gas dissociation of C4F8 by the decrease of average electron temperature and, which resulted in a change in composition of the fluorocarbon polymer on the etched materials surface from C–C rich to CF2 rich. With decreasing the duty ratio, not only the etch selectivity but also the improvement in the SiO2 etch profile could be observed.  相似文献   

11.
A Ni–Zn ferrite-enhanced U-shaped internal inductive antenna (240 mm $times$ 2300 mm) operated at 2 MHz was used as a linear plasma source for an ultralarge-area plasma, and its plasma and electrical characteristics were investigated and compared with those of the antenna operated at 13.56 MHz without the ferrite. By the magnetic field enhancement, the operation of the source showed higher power transfer efficiency, lower antenna impedance, and lower RF rms voltage compared to that operated at 13.56 MHz without the ferrite. When photoresist etch uniformity was measured by etching the photoresist using a 40-mtorr $hbox{Ar/O}_{2} (7:3)$ mixture at 2 MHz by locating three U-shaped antennas in parallel, the etch uniformity less than 11% could be obtained on the substrate size of 2300 mm $times$ 2000 mm.   相似文献   

12.
叶超  宁兆元 《中国物理 B》2010,19(5):57701-057701
This paper investigates the capacitance--voltage ($C$--$V$) characteristics of F doping SiCOH low dielectric constant films metal--insulator--semiconductor structure. The F doping SiCOH films are deposited by decamethylcyclopentasiloxane (DMCPS) and trifluromethane (CHF7755, 6855http://cpb.iphy.ac.cn/CN/10.1088/1674-1056/19/5/057701https://cpb.iphy.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=111779F-SiCOH, low-k dielectrics, capacitance--voltage characteristicProject supported by the National Natural Science Foundation of China (Grant No.~10575074).2/4/2009 12:00:00 AMThis paper investigates the capacitance--voltage ($C$--$V$) characteristics of F doping SiCOH low dielectric constant films metal--insulator--semiconductor structure. The F doping SiCOH films are deposited by decamethylcyclopentasiloxane (DMCPS) and trifluromethane (CHF$_{3})$ electron cyclotron resonance plasmas. With the CHF$_{3}$/DMCPS flow rate ratio from 0 to 0.52, the positive excursion of $C$--$V$ curves and the increase of flat-band voltage $V_{\rm FB}$ from $-6.1$~V to 32.2~V are obtained. The excursion of $C$--$V$ curves and the shift of $V_{\rm FB}$ are related to the change of defects density and type at the Si/SiCOH interface due to the decrease of Si and O concentrations, and the increase of F concentration. At the CHF$_{3}$/DMCPS flow rate ratio is 0.12, the compensation of F-bonding dangling bond to Si dangling bond leads to a small $V_{\rm FB}$ of 2.0~V.半导体结构;电压特性;电容电压;绝缘体;薄膜;金属;电子回旋共振等离子体;兴奋剂This paper investigates the capacitance-voltage (C-V) characteristics of F doping SiCOH low dielectric constant films metal-insulator-semiconductor structure. The F doping SiCOH films are deposited by decamethylcyclopentasilox-ane [DMCPS) and trifluromethane (CHF3) electron cyclotron resonance plasmas. With the CHF3/DMCPS flow rate ratio from 0 to 0.52, the positive excursion of C-V curves and the increase of fiat-band voltage VFB from -6.1 V to 32.2V are obtained. The excursion of C-V curves and the shift of VFB are related to the change of defects density and type at the Si/SiCOH interface due to the decrease of Si and O concentrations, and the increase of F concentration. At the CHF3/DMCPS flow rate ratio is 0.12, the compensation of F-bonding dangling bond to Si dangling bond leads to a small VFB of 2.0V.  相似文献   

13.
陈献忠  李海颖 《中国物理快报》2007,24(10):2830-2832
Interference lithography is used to fabricate a nanoimprint stamp, which is a key step for nanoimprint lithography. A layer of chromium in thickness of about 20 nm is deposited on the newly cleaned fused silica substrate by thermal evaporation, and a layer of positive resist in thickness of 150nm is spun on the chromium layer. Some patterns, including lines, holes and pillars, are observed on the photoresist film by exposing the resist to interference patterns and they are then transferred to the chromium layer by wet etching. Fused silica stamps are fabricated by reactive ion etching with CHF3/O2 as etchants using the chromium layer as etch mask. An atomic force microscope is used to analyse the pattern transfer in each step. The results show that regular hole patterns of fused silica, with average full width 143nm at half maximum (FWHM), average hole depth of 76nm and spacing of 450nm, have been fabricated. The exposure method is fast, inexpensive and applicable for fabrication of nanoimprint stamps with large areas.  相似文献   

14.
IR laser chemistry of CHF3 is investigated in both neat form and in the presence of Cl2 for carbon-13 enrichment. Infrared multiple-photon dissociation of CHF3 is an order of magnitude more efficient in the scavenged system compared to the neat case. The photolysis of CHF3/Cl2 mixture results in two products, viz., CF2Cl2 and C2F4Cl2 but with different enrichment factors. The parametric studies show that C2F4Cl2 arises due to MPD of CF2Cl2 in secondary photolysis.  相似文献   

15.
As-deposited HfO2 films were modified by CHF3, C4F8, and mixed C4F8/O2 plasmas in a dual-frequency capacitively coupled plasma chamber driven by radio frequency generators of 60 MHz as the high frequency (HF) source and 2 MHz as the low frequency source (60/2 MHz). The influences of various surface plasma treatments under CHF3, C4F8, and C4F8/O2 were investigated in order to understand the chemical and structural changes in thin-film systems, as well as their influence on the electrical properties. Fluorine atoms were incorporated into the HfO2 films by either CHF3 or C4F8 plasma treatment; meanwhile, the C/F films were formed on the surface of the HfO2 films. The formation of C/F layers decreased the k value of the gate stacks because of its low dielectric constant. However, the addition of O2 gas in the discharge gases suppressed the formation of C/F layers. After thermal annealing, tetragonal HfO2 phase was investigated in both samples treated with CHF3 and C4F8 plasmas. However, the samples treated with O-rich plasmas showed monoclinic phase, which indicated that the addition of O plasmas could influence the Hf/O ratio of the HfO2 films. The mechanism of the t-HfO2 formation was attributed to oxygen insufficiency generated by the incorporation of F atoms. The capacitors treated with C4F8/O2 plasmas displayed the highest k value, which ascribed that the C/F layers were suppressed and the tetragonal phase of HfO2 was formed. Good electrical properties, especially on the hysteresis voltage and frequency dispersion, were obtained because the bulk traps were passivated by the incorporation of F atoms. However, the H-related traps were generated during the CHF3 plasma treatments, which caused the performance degradation. All the treated samples showed lower leakage current density than the as-deposited HfO2 films at negative bias due to the reduced trap-assisted tunneling by the incorporation of F to block the electrons transferring from metal electrode to the trap level.  相似文献   

16.
The present paper investigates the surface roughness generated by reactive ion etching (RIE) on the location between silicon dioxide (SiO2) micro-pits structures. The micro-pit pattern on polymethyl methacrylate (PMMA) mask was created by an electron beam lithography tool. By using PMMA as a polymer resist mask layer for pattern transfer in RIE process, the carbon (C) content in etching process is increased, which leads to decrease of F/C ratio and causes domination of polymerization reactions. This leads to high surface roughness via self-organized nanostructure features generated on SiO2 surface which was analyzed using atomic force microscopy (AFM) technique. The etching chemistry of CHF3 plasma on PMMA masking layer and SiO2 is analyzed to explain the polymerization. The surface root-mean-square (RMS) roughness below 1 nm was achieved by decreasing the RF power to 150 W and process pressure lower than 10 mTorr.  相似文献   

17.
The vertical ionization potentials of the K-shell of carbon have been calculated in CH4, CH3F, CH2F2, CHF3 and CF4. The ab initio SCF CI approach has been used for the first three compounds with an attempt to rationalize the choice of the atomic orbital basis sets. The ionization potentials of CHF3 and CF4 have been extrapolated from the proceeding results. The effect of the CI cannot be neglected in either of these compounds, but it can in CH4.  相似文献   

18.
We report a time-dependent quantum wavepacket theory employed to interpret the photoabsorption spectrum of the N20 molecule in terms of the nuclear motion on the upper 21A' and 11A" potential energy surfaces. The N2-O bond breaks upon excitation leading to dissociation. The total angular momentum is treated correctly taking into account the vector property of the electric field of the exciting radiation.  相似文献   

19.
In this study, we investigated the surface properties of diamond-like carbon (DLC) films for biomedical applications through plasma etching treatment using oxygen (O2) and hydrogen (H2) gas. The synthesis and post-plasma etching treatment of DLC films were carried out by 13.56 MHz RF plasma enhanced chemical vapor deposition (PECVD) system. In order to characterize the surface of DLC films, they were etched to a thickness of approximately 100 nm and were compared with an as-deposited DLC film. We obtained the optimum condition through power variation, at which the etching rate by H2 and O2 was 30 and 80 nm/min, respectively. The structural and chemical properties of these thin films after the plasma etching treatment were evaluated by Raman and Fourier transform infrared (FT-IR) spectroscopy. In the case of as-deposited and H2 plasma etching-treated DLC film, the contact angle was 86.4° and 83.7°, respectively, whereas it was reduced to 35.5° in the etching-treated DLC film in O2 plasma. The surface roughness of plasma etching-treated DLC with H2 or O2 was maintained smooth at 0.1 nm. These results indicated that the surface of the etching-treated DLC film in O2 plasma was hydrophilic as well as smooth.  相似文献   

20.
SiCOH低介电常数薄膜的性质和键结构分析   总被引:4,自引:0,他引:4       下载免费PDF全文
以十甲基环五硅氧烷为反应源、采用电子回旋共振等离子体化学气相沉积(ECR_CVD)方法制备了具有低介电常数,且电绝缘性能和热稳定性优良的SiCOH薄膜. 通过对富氏变换红外光谱(FTIR)的分析,比较了反应源和薄膜键结构的差异,证实薄膜中一方面保持了源中由Si—O—Si键构成的环结构,另一方面形成了由大键角Si—O—Si键构成的鼠笼式结构,在沉积过程中失去的主要是侧链的—CH3基团. 薄膜经过400℃热处理后,其介电常数由385降低到285,对其FTIR谱的分析指出,薄膜中鼠笼式结构比例的增加可能是薄膜介电常数降低的原因. 关键词: 低介电常数 SiCOH薄膜 化学键结构  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号