首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a scheme for generating an N-atom cluster state via cavity quantum electrodynamics ( CQED). In our scheme, there is no transfer of quantum information between the atoms and the cavity, i.e., the cavity is always in the vacuum state, so the cavity decay can be suppressed. Also, the generated cluster state is the entanglement of the ground states, so the atomic spontaneous emission can be avoided. Therefore, the cluster state generated in our scheme has a longer lifetime. Furthermore, the requirement on the quality factor of the cavity greatly loosened for the cavity is only virtually excited.  相似文献   

2.
We propose a method of generating a four-atom entangled cluster state by considering two kinds of the atoms–cavity field interaction in cavity QED. During the preparation the cavity is only virtually excited no quantum information will be transferred from the atoms to the cavity and thus the scheme is insensitive to the cavity field states and cavity decay. The scheme can also be used to generate the cluster state for the trapped ions.  相似文献   

3.
Two schemes are proposed for generating atomic qubits cluster states in cavity quantum electrodynamics (QED). In the first scheme, only two-atom-cavity interactions are involved, and cluster states can be directly generated by using constructed two-qubit controlled phase gates. The second scheme needs the assistance of additional single-qubit rotations, but takes less time than the first one for two-atom operations in the cavity. In this scheme, two projective operators are constructed to prepare two-dimension or more complicated configurations of cluster states. Both schemes are insensitive to the cavity decay due to the fact that the cavity is only virtually excited during the interaction between atoms and the cavity. The idea can also be applied to the ion trap system.  相似文献   

4.
We propose one cavity QED (CQED) scheme for generating an arbitrary 2-level-atom cluster state. Besides, by using a 4-atom cluster state as quantum channel, we propose another CQED scheme for teleporting any unknown two-atom state. In both schemes, the dynamics processes are essentially quite similar. The Rabi frequency of the classical driving field is much bigger than the detuning between the atoms and the cavity. Hence both schemes are insensitive to the cavity decay. The necessary time for implementation is much shorter than the Rydberg-atom lifespan, therefore atom decays do not need to be considered. Moreover, in the teleportation scheme the discrimination of the 16 mutually orthogonal 4-atom cluster states is transformed into the discrimination of single-atom product states, consequently the discrimination difficulty is degraded and the scheme is more easily implemented.  相似文献   

5.
We present a scheme for the generation of a five-atom cluster state in cavity QED. During the preparation no quantum information is transferred from the atoms to the cavity, and thus the scheme is insensitive to the cavity field states and cavity decay.  相似文献   

6.
We propose a scheme for controllably entangling the ground states of five-state W-type atoms confined in a cavity and realizing swap gate and phase gate operations. In this scheme the cavity is only virtually excited and the atomic excited states are almost not occupied, so the produced entangled states and quantum logic operations are very robust against the cavity decay and atomic spontaneous emission.  相似文献   

7.
章文  刘益民  刘俊  张战军 《中国物理 B》2008,17(9):3203-3208
This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct advantages of the present scheme are: (i) The discrimination of 16 orthonormal cluster states in the standard teleportation protocol is transformed into the discrimination of single-atom states. Consequently, the discrimination difficulty of states is degraded. (ii) The scheme is insensitive to the cavity field state and the cavity decay for the thermal cavity is only virtually excited when atoms interact with it. Thus, the scheme is more feasible.  相似文献   

8.
We propose a model to implement the two-qubit quantum logic gates, i.e., the quantum phase gate and the Controlled-NOT gate, and generate the atomic qubits cluster states with a large detuned interaction between four-level atoms and a single-mode cavity field. In the presented protocol, the quantum information is encoded on the stable ground states of the atoms, and the effect of decoherence from atomic spontaneous emission is negligible. In addition, the interaction between atoms and the cavity is large detuned, and the cavity is only virtually excited. Therefore, the scheme is insensitive to the cavity decay. The experimental feasibility of our proposal is also discussed.  相似文献   

9.
We propose a scheme for preparation of two-dimensional cluster states of atoms, which is based on quantum Zeno dynamics. The influence of decoherence induced by spontaneous emission and the decay of cavity and optical fiber is considered by a straightforward numerical calculation. The results show that a relatively high fidelity of two-dimensional cluster states can be obtained according to the proposed scheme. In addition, it also provides with a scalable way to extend to prepare three-dimensional cluster states in a cubic model.  相似文献   

10.
We propose a method to prepare multipartite entangled states such as cluster states and graph states based on the cavity input-output process and single photon measurement. Two quantum gates, a controlled phase gate and a fusion gate between two atoms trapped in respective cavities, are proposed to prepare atomic cluster states and graph states with one and two dimensions. We also introduce a scheme that can generate an arbitrary multipartite photon duster state which uses two coherent states as a qubit basis.  相似文献   

11.
We propose a scheme for the generation of the cluster states for many atoms in cavity QED. In our scheme, the atoms are sent through nonresonant cavity fields in the vacuum states. The cavity fields are only virtually excited and no quantum information will be transferred from the atoms to the cavity fields. The advantage is that the cavities are suppressed during the procedure. The scheme can also be generalized to the ion trap system.  相似文献   

12.
We propose a scheme for the generation of the cluster states for many atoms in cavity QED. In our scheme,the atoms are sent through nonresonant cavity fields in the vacuum states. The cavity fields are only virtually excited and no quantum information will be transferred from the atoms to the cavity fields. The advantage is that the cavities are suppressed during the procedure. The scheme can also be generalized to the ion trap system.  相似文献   

13.
We propose an experimentally feasible scheme of implementing perfect quantum dense coding with three-atom W-class state in cavity QED. In this scheme atoms interact simultaneously with a highly detuned cavity field and the cavity is only virtually excited, thus the scheme is insensitive to the cavity decay, which is very important in view of experiment. Moreover, we also propose a scheme of transmitting three bits of classical information by sending one qubit and one classical bit with 3-qubit W-class and GHZ states.  相似文献   

14.
我们提出了一个在热腔中产生多原子GHZ态的方法来检验量子非定域性。在这个方法中,三个原子被同时送入一个热腔中,它们初始时处于相同的态。这个方法既对腔的衰减不敏感又对热场不敏感,这为检验量子力学的基本方面提供了新的前景。  相似文献   

15.
姜春蕾 《物理学报》2008,57(1):190-193
In this paper, we propose a physical scheme to realize quantum SWAP gate by using a large-detuned single-mode cavity field and two identical Rydberg atoms. It is shown that the scheme can also be used to create multi-atom cluster state. During the interaction between atom and cavity, the cavity is only virtually excited and thus the scheme is insensitive to the cavity field states and cavity decay. With the help of our scheme it is very simple to prepare the $N$-atom cluster state with perfect fidelity and probability. The practical feasibility of this method is also discussed.  相似文献   

16.
In this paper, we propose a physical scheme to realize quantum SWAP gate by using a large-detuned single-mode cavity field and two identical Rydberg atoms. It is shown that the scheme can also be used to create multi-atom cluster state. During the interaction between atom and cavity, the cavity is only virtually excited and thus the scheme is insensitive to the cavity field states and cavity decay. With the help of our scheme it is very simple to prepare the N-atom cluster state with perfect fidelity and probability. The practical feasibility of this method is also discussed.  相似文献   

17.
郑小娟  徐慧  方卯发  朱开成 《中国物理 B》2010,19(3):34207-034207
This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity during the preparation for a four-atom entangled cluster state, and thus the scheme is insensitive to the cavity field states and cavity decay. Assuming that deviation of laser intensity is 0.01 and that of simultaneity for the interaction is 0.01, it shows that the fidelity of the resulting four-atom entangled cluster state is about 0.9886. The scheme can also be used to generate a four-ion entangled cluster state in a hot trapped-ion system. Assuming that deviation of laser intensity is 0.01, it shows that the fidelity of the resulting four-ion entangled cluster state is about 0.9990. Experimental feasibility for achieving this scheme is also discussed.  相似文献   

18.
吴韬  叶柳  倪致祥 《中国物理》2006,15(11):2506-2509
In this paper, we propose a scheme for transferring an unknown atomic entangled state via cavity quantum electrodynamics (QED). This scheme, which has a successful probability of 100 percent, does not require Bell-state measurement and performing any operations to reconstruct an initial state. Meanwhile, the scheme only involves atom--field interaction with a large detuning and does not require the transfer of quantum information between the atoms and cavity. Thus the scheme is insensitive to the cavity field states and cavity decay. This scheme can also be extended to transfer ring an entangled state of $n$-atom.  相似文献   

19.
Scheme for Quantum Entanglement Swapping on Cavity QED System   总被引:1,自引:0,他引:1  
We propose a scheme for realizing quantum entanglement swapping between the atoms in cavity QED. With only virtual excitation of the cavity during the interaction between the atoms and cavity, the scheme is insensitive to the cavity mode states and the cavity decay. The ideas can also be utilized for realizing entanglement swapping between the atomic levels in a single atom and the atomic levels in the Bell states and between the atomic levels in the Bell states and the atomic levels in the W states.  相似文献   

20.
疏静  刘中 《理论物理通讯》2010,53(6):1155-1159
We propose a scheme to generate two-atom maximally entangled state in cavity quantum electrodynamies (QED). The scheme can 5e extended to generation of entangled multi-atom Dicke states if we control the interaction time of atoms with cavity modes. We use adiabatically state evolution under large atom-cavity detuning, so the scheme is insensitive to atomic spontaneous decay. The influence of cavity decay on fidelity and success probability is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号