首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
激发态双质子转移反应长期困扰着理论和实验科学家并成为了一个悬而未决的热点问题. 本文利用完全活化空间自洽场方法及其二阶微扰理论(MS-CASPT2//CASSCF)系统地研究了典型体系1,8-二羟基-2-萘甲醛(DHNA)的激发态双质子转移反应以及相关的激发态弛豫过程. 在MS-CASPT2//CASSCF水平下,本文优化了三个能量相近但结构不同的S1态互变异构体,即S1-ENOL、S1-KETO-1和S1-KETO-2,以及两个关键的S1/S0锥形交叉点结构,即S1S0-KETO-1和S1S0-KETO-2. 其中,两个极小点S1-KETO-1和S1-KETO-2与实验上观测到的双荧光发射现象密切相关. 本文还利用MS-CASPT2//CASSCF方法计算了双质子转移反应的二维势能面以及从极小点到交叉点结构的线性内插路径;相应计算结果证实了DHNA体系具有分步的激发态双质子转移机制. 具体来说,从S1-ENOL到S1-KETO-1的第一个质子转移过程是无能垒的,而从S1-KETO-1到S1-KETO-2的第二个质子转移过程则需要克服一个大约6.0 kcal/mol的能垒. 此外,由于从S1-KETO-1 (S1-KETO-2)到S1S0-KETO-1 (S1S0-KETO-2)的线性内插路径显示DHNA体系需要翻越一个约为12.0 kcal/mol的能垒,因此DHNA体系将在S1态上停留一段时间并发生双荧光发射现象. 当然,S1/S0锥形交叉点也会促使DHNA体系从S1态内转换到S0态,而这会一定程度上降低DHNA体系发射荧光的效率. 可以通过限制C5-C8-C9-O10二面角旋转来降低体系的内转换效率,进而提高DHNA体系的发光效率. 本工作不仅有助于理解激发态双质子转移机制,还有助于设计具有优异发光性能的新型分子材料.  相似文献   

2.
利用高精度的CASSCF和MS-CASPT2电子结构计算方法系统地研究了2-(2'-羟基苯基)-4-甲基噁唑的光物理和光化学机理. 在CASSCF级别,首先优化得到势能面极小结构和圆锥交叉结构,及激发态质子转移、异构化、和失活的极小能量路径. 然后用MS-CASPT2方法对所有得到的结构和能量路径进行单点能量校正,我们发现在含有OH…N氢键的构象异构体中,激发态质子转移基本上是一个无垒的过程;在含OH…O 氢键的构象异构体中,激发态质子转移被抑制了. 此外,找到两个能量较低的酮式S1/S0圆锥交叉结构,使得激发态质子转移生成的S1酮式结构可以很快失活到达基态. 但是,醇式S1/S0圆锥交叉结构能量较高,抑制了S1醇式结构的激发态失活.  相似文献   

3.
基于含硼热活化延迟荧光化合物p-AC-DBNA (a),通过在供体吖啶部分添加两个氮原子,设计了一系列新的热活化延迟荧光分子b1∽b4. 使用密度泛函理论和含时密度泛函理论计算了化合物a和b1∽b4的前线轨道能级、发射光谱、单重态-三重态能隙、反向系间窜越速率常数. 计算结果表明,与分子a相比,新设计分子的最大发射波长显著蓝移了47∽125 nm. 其中,b1和b3分子发射深蓝色荧光,而b2和b4分子发射浅蓝色荧光. 此外,发现了a、b2和b4分子中的反向系间窜越过程不仅可以通过从T1态到S1态的跃迁来实现,而且也可能通过从T2态到S1态的跃迁来实现. b1和b3分子中的反向系间窜越过程主要通过T2→S1过程的热激子方式发生. 重要的是,计算得到的b2和b4分子中T1→S1的反向系间窜越速率常数值是a分子的两到三倍,这表明b2和b4分子热活化延迟荧光性能更显著. 研究结果不仅提供了两种有前景的硼基热活化延迟荧光候选化合物(b2和b4),而且为蓝色OLED材料的设计提供了理论依据.  相似文献   

4.
利用飞秒瞬态吸收光谱技术研究了反式对氨基偶氮苯(AAB)溶解在乙醇中的超快激发态动力学.当利用400 nm光激发分子到S2态后,由S211102412相似文献   

5.
本文采用基于多体格林函数方法和Bethe-Salpeter方程(GW/BSE)的电子结构计算方法和非绝热动力学模拟研究了两种不同桥连化学键构型(5-6构型和6-6构型)的酞菁锌-富勒烯(ZnPc-C60)给受体复合物的激发态性质及其弛豫过程. 对于6-6构型,ZnPc-C60的最低激发态S1态为光谱明态,即ZnPc的局域激发(LE)态,因此,6-6构型的ZnPc-C60在光激发之后几乎不会发生电荷分离过程. 相比之下,5-6构型的ZnPc-C60的S1态是C60的LE态,为光谱暗态,而作为光谱明态的ZnPc的LE态的能量更高. 而且,在ZnPc和C60的LE态之间还存在若干电荷转移(CT)态. 因此,电荷转移会在从高能的ZnPc的LE态到低能的C60的LE态的弛豫过程中发生. GW/BSE级别的非绝热动力学模拟结果进一步验证了电子结构计算的结论,并给出了相关过程的时间尺度:从ZnPc到C60的超快激发态能量转移过程在前200 fs完成;随后发生的是由C60到ZnPc的超快空穴转移过程. 本工作表明不同的桥连化学键模式(即5-6和6-6构型)可用于调节ZnPc-C60给体-受体复合物的激发态性质及其光电性质. 与此同时,本工作证明了GW/BSE级别的非绝热动力学方法是探索非周期性给体-受体复合物、有机金属配合物、量子点、纳米团簇等复杂体系的光诱导动力学的可靠工具.  相似文献   

6.
N-乙基吡咯是吡咯分子的一个乙基取代衍生物,它的激发态衰变动力学目前为止很少被研究. 本文利用飞秒时间分辨光电子成像的实验方法研究N-乙基吡咯分子S1态的衰变动力学. 实验采用241.9和237.7 nm的泵浦激发波长. 在241.9 nm激发下,得到5.0±0.7 ps,66.4±15.6 ps和1.3±0.1 ns三个寿命常数. 在237.7 nm激发下,得到2.1±0.1 ps和13.1±1.2 ps两个寿命常数. 所有寿命常数都归属为S1态的振动态. 本文并对不同S1振动态的弛豫机理进行了讨论.  相似文献   

7.
本文基于第一性原理,研究了八个热活化延迟荧光分子的性质,揭示了基团供电子能力对分子几何构型、跃迁属性以及反系间窜越过程的影响.研究结果表明,对于咔唑和氧杂蒽酮组成的一类分子的最低三重激发态(T1)而言,供体基团的二苯胺取代,几乎不会改变供体和受体之间的夹角,但却可以减小供体和受体间的键长.基团供电子能力越强,最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)间的轨道重叠度越小,最低单重激发态S1和T1之间的能差(△ES1-T1)越小.此外,供体基团上增加二苯胺能够增加HOMO的离域性,而且能够进一步地减小△ES1-T1.通过计算S1和T1之间的旋轨耦合系数(Hso),发现(<S1so|T1>2)/(△ES1-T12)数值越大,反系间窜越速率越大.计算表明八个分子都可能是高效的热活化延迟荧光分子.本文提出了一条高效热活化延迟荧光分子的设计策略,即分离HOMO和LUMO的分布和增加HOMO的离域性能够有效地减小S1-T1能差.  相似文献   

8.
本文用最近发展的神经网络拟合方法[Chin. J. Chem. Phys. 34,825 (2021)]构造了一个新的涉及苯硫酚1πσ*态-介导光解的1ππ*1πσ*态耦合非绝热势能面. 势能面包含了解离过程中的三个关键振动模式,即S-H伸缩、弯曲和扭转振动. 由于单双激发态运动方程耦合簇方法具有简单、效率高、精度高的优点,采用激发态运动方程耦合簇方法计算了苯硫酚激发态1ππ*1πσ*的绝热能量. 神经网络拟合绝热激发态S1和S2态的均方根误差分别为0.89和1.33 meV,表明神经网络方法具有很高的拟合精度. 在构建非绝热势能面的过程中,仅利用了体系绝热势能,避免了非常耗时的非绝热耦合计算,极大地提高了效率. 为了检测新的非绝热势能面的可靠性,本文进一步展开了苯硫酚光解非绝热动力学模拟. 动力学计算得到的S1振电态00和31的寿命与实验和之前的理论结果均吻合,验证了基于激发态运动方程耦合簇绝热能量构建的非绝热势能面的可靠精确性,并可进一步应用到实际大分子体系中.  相似文献   

9.
采用共振拉曼光谱学和完全活化空间自洽场方法研究了苯基叠氮被激发到S2(A')、S3(A')和S6(A')光吸收态后的结构动力学. 基于傅立叶变换拉曼、傅立叶变换红外、紫外、密度泛函计算和简正模式分析,指认了紫外吸收光谱和振动光谱. 获得了环己烷、乙腈和甲醇溶剂中273.9、252.7、245.9、228.7、223.1和208.8 nm等不同激发波长下的A、B和C带共振拉曼光谱,以探测Franck-Condon区域的结构动力学. CASSCF计算获得了单重电子激发态能量最低点和势能面交叉点的电子激发能和优化几何结构. 结果表明,苯基叠氮在S2(A')、S3(A')和S6(A')态上的激发态结构动力学各不相同. 与Kasha规则相符,S2S1(1)和S2S1(2)势能面交叉点在S2(A')激发态衰变动力学和N7=N8键解离中扮演着重要角色. 提出了两条主要衰减通道:S2,min→S0辐射通道和S2,FC(ππ*)→S2(ππ*)/S1(nπ*)→S1(nπ*)非辐射通道.  相似文献   

10.
利用飞秒泵浦-探测方法结合飞行时间质谱研究了苯甲醛在不同泵浦波长260、271、284和287 nm下的超快动力学. 在S2区(λ<284 nm),受激分子首先经过内转换过程到S1高振动态,实验观察到这个过程随着S2态分子振动能量的增加而变快,可能源于高振动能级密度导致S2与S1之间内转换加快. 双指数拟合的第二个过程(约600 fs)认为可能是由于内转换后在S1态发生的振动  相似文献   

11.
Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S1 or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S2 state or two-photon excitation to the symmetry-forbidden S1 state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S1.  相似文献   

12.
In this present work, we theoretically study the excited state intramolecular proton transfer (ESIPT) mechanism about a quinoline/isoquinoline‐pyrazole isomer QP‐I system. Compared with previous experimental results, our calculated results reappear previous data, which further confirm the theoretical level we used is reasonable. We mainly adopt 2 kinds of solvents (nonpolar cyclohexane and polar acetonitrile) to explore solvents effects on this system. Through reduced density gradient (RDG) function, the intramolecular hydrogen bond N1─H2···N3 has been confirmed existing in both S0 and S1 states, although the distance between H2 and N3 is not short. In addition, the strengthening N1─H2···N3 in the S1 state provides possibility for ESIPT. Explorations about charge redistribution reveal the trend of ESIPT, and frontier orbital gap reflects the reactivity in polar and nonpolar solvents. The constructing potential energy curves reveal that potential energy barriers could be controlled and regulated by solvent polarity.  相似文献   

13.
We theoretically investigate the excited state behaviors of the novel fluorophore tetraphenylethene‐2‐(2′‐hydroxyphenyl)benzothiazole (TPE‐HBT), which was designed based on the intersection of TPE and HBT, using density functional theory and time‐dependent density functional theory methods. Compared with previous experimental results about fluorescence peaks, our calculated results are in good agreement with experimental data, which further confirms that the theoretical level we used is reasonable. Furthermore, our results confirm that the excited state intramolecular proton transfer (ESIPT) process happens upon photoexcitation, which is distinctly monitored by the infrared spectra and the potential energy curves. In addition, the calculation of highest occupied molecular orbital and lowest unoccupied molecular orbital reveals that the electron density change of proton acceptor because of the intramolecular charge transfer (ICT) process in the S1 state induces the ESIPT. Moreover, the transition density matrix is worked out to facilitate deeper insight into the ESIPT coupled ICT process. It is hoped that the present work not only elaborates the ESIPT coupled ICT phenomenon and corresponding mechanisms for the TPE‐HBT but also may be helpful to design and develop new materials and applications involved in TPE‐HBT systems in future.  相似文献   

14.
In the present work, using density functional theory and time‐dependent density functional theory methods, we investigated and presented the excited‐state intramolecular proton transfer (ESIPT) mechanisms of a novel Compound 1 theoretically. Analyses of electrostatic potential surfaces and reduced density gradient (RDG) versus sign(λ2)ρ, we confirm the existence of intramolecular hydrogen bond O1‐H2···N3 for Compound 1 in the S0 state. Comparing the primary structural variations of Compound 1 involved in the intramolecular hydrogen bond, we find that O1‐H2···N3 should be strengthened in the S1 state, which may facilitate the ESIPT process. Concomitantly, infrared (IR) vibrational spectra analyses further verify the stability of hydrogen bond. In addition, the role of charge transfer interaction has been addressed under the frontier molecular orbitals, which depicts the nature of electronical excited state and supports the ESIPT reaction. The theoretically scanned and optimized potential energy curves according to variational O1‐H2 coordinate demonstrate that the proton transfer process should occur spontaneously in the S1 state. It further explains why the emission peak of Compound 1‐enol was not reported in previous experiment. This work not only presents the ESIPT mechanism of Compound 1 but also promotes the understanding of this kind of molecules for further applications in future.  相似文献   

15.
Spectroscopic investigations on excited state proton transfer of a new dibenzimidazolo diimine sensor (DDS) were reported by Goswami et al. recently. In our present work, based on the time‐dependent density functional theory (TDDFT), the excited‐state intramolecular proton transfer (ESIPT) mechanism of DDS is studied theoretically. Our calculated results reproduced absorption and fluorescence emission spectra of the previous experiment, which verifies that the TDDFT method we adopted is reasonable and effective. The calculated dominating bond lengths and bond angles involved in hydrogen bond demonstrate that the intramolecular hydrogen bond is strengthened. In addition, the phenomenon of hydrogen bond reinforce has also been testified based on infrared vibrational spectra. Further, hydrogen bonding strengthening manifests the tendency of ESIPT process. The calculated frontier molecular orbitals further demonstrate that the excited state proton transfer is likely to occur. According to the calculated results of potential energy curves along O–H coordinate, the potential energy barrier of about 5.02 kcal/mol is discovered in the S0 state. However, a lower potential energy barrier of 0.195 kcal/mol is found in the S1 state, which demonstrates that the proton transfer process is more likely to happen in the S1 state than the S0 state. In other words, the proton transfer reaction can be facilitated based on the photo‐excitation effectively. Moreover, the phenomenon of fluorescence quenching could be explained based on the ESIPT mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
An intramolecular excited charge transfer (CT) analysis of imidazole derivatives has been made. The determined electronic transition dipole moments has been used to estimate the electronic coupling interactions between the excited charge transfer singlet state (1CT) and the ground state (S0) or the locally excited state (1LE). The properties of excited 1CT state imidazole derivatives have been exploited by the significant contribution of the electronic coupling interactions. The excited state intramolecular proton transfer (ESIPT) analysis has also been discussed.  相似文献   

17.
Li H  Niu L  Xu X  Zhang S  Gao F 《Journal of fluorescence》2011,21(4):1721-1728
This article presents a comprehensive therotical investigation of excited state intramolecular proton transfer (ESIPT) for some newly-designed diphenylethylene derivatives containing 2-(2-hydroxy-phenyl)-benzotriazole moiety with various substituted groups. The calculation shows the structural parameters and Mulliken charges of phototautomers enol (E) and keto (K) of these compounds exhibit no or tiny changes from S0 to S1. The calculated results suggest that HOMO and LUMO + 1 of the compounds displays excellent overlapping nature, and thus the absorption and emission could be from the electron transition of HOMO→LUMO + 1. The electron density distribution in the frontier orbital of E and K are influenced remarkably by various substituted groups in S0 and S1 states. Electron density distribution deficiency in 2-(2-hydroxy-phenyl)-benzotriazole part is observed in L + 1 for these derivatives. The calculation also suggests the potential energy curves of ESIPT are shown to be a strong relationship with electron donor-acceptor groups. The absorption spectra, normal emission spectra and ESIPT spectra of the derivatives were also calculated.  相似文献   

18.
In this work, using density functional theory and time‐dependent density functional theory methods, we theoretically studied the excited‐state behaviors of 3 novel 2‐(2‐hydroxyphenyl)benzothiazole (HBT) derivatives (HBT‐H‐H, HBT‐CN‐H, and HBT‐CN‐CN). Analyses about primary chemical structures such as bond lengths and bond angles, we found that all the intramolecular hydrogen bonds in these 3 structures should be strengthened in the S1 state upon the photoexcitation. Exploring the infrared vibrational spectra at the hydrogen bonds groups, we confirmed that nonsubstitutional HBT‐H‐H structure might play more important roles in the excited‐state intramolecular proton transfer (ESIPT) reaction than HBT‐CN‐H and HBT‐CN‐CN. Further, investigating vertical excitation process, it can be revealed that charge redistribution involved in hydrogen bonding moieties could facilitate the ESIPT reaction. Based on constructing potential energy curves of both S0 and S1 states, we confirmed that the substituents on HBT systems can reasonably regulate and control the ESIPT processes because of the different potential energy barriers. We deem that this present work not only elaborates the different excited‐state behaviors of HBT‐H‐H, HBT‐CN‐H, and HBT‐CN‐CN but also may play important roles in designing and developing new materials and applications involved in HBT systems in future.  相似文献   

19.
Spectroscopic studies on excited‐state proton transfer of a new chromophore 2‐(2′‐benzofuryl)‐3‐hydroxychromone (BFHC) have been reported recently. In the present work, based on the time‐dependent density functional theory (TD‐DFT), the excited‐state intramolecular proton transfer (ESIPT) of BFHC is investigated theoretically. The calculated primary bond lengths and angles involved in hydrogen bond demonstrate that the intramolecular hydrogen bond is strengthened. In addition, the phenomenon of hydrogen bond reinforce has also been testified based on infrared (IR) vibrational spectra as well as the calculated hydrogen bonding energies. Further, hydrogen bonding strengthening manifests the tendency of excited state proton transfer. Our calculated results reproduced absorbance and fluorescence emission spectra of experiment, which verifies that the TD‐DFT theory we used is reasonable and effective. The calculated Frontier Molecular Orbitals (MOs) further demonstrate that the excited state proton transfer is likely to occur. According to the calculated results of potential energy curves along O―H coordinate, the potential energy barrier of about 14.5 kcal/mol is discovered in the S0 state. However, a lower potential energy barrier of 5.4 kcal/mol is found in the S1 state, which demonstrates that the proton transfer process is more likely to happen in the S1 state than the S0 state. In other words, the proton transfer reaction can be facilitated based on the photo‐excitation effectively. Moreover, the phenomenon of fluorescence quenching could be explained based on the ESIPT mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
《Current Applied Physics》2015,15(11):1492-1499
1,2-Dihydroxyanthraquinone (alizarin) shows dual emission bands with a large Stokes shift from a “locally-excited (LE)” and “proton-transferred (PT)” tautomers in the excited state. Excited state intramolecular proton transfer (ESIPT) reaction of alizarin is tunable by changing concentration, solvent polarity, excitation wavelength, and etc. ESIPT reaction of alizarin in the excited state was investigated by steady-state absorption/emission spectroscopy and femtosecond transient absorption spectroscopy. In ethanol solution, the lifetime of PT tautomer of alizarin was measured as 87 ps, in addition to 0.35 and 8.3 ps vibrational cooling dynamics for the LE and PT tautomers of alizarin, respectively. In binary mixtures of ethanol and water, the excited state dynamics became more complicated; the LE and PT tautomers appeared to decay with 8.9 and 30.8 ps lifetimes, which is much shorter compared to the lifetime of the PT tautomer in ethanol. A long-lived nonradiative state in the excited states of alizarin was found as well, which was proposed as a “trapped” state with tightly hydrogen-bonded water molecules. The ESIPT reaction of alizarin was blocked in a 1:1 mixture of ethanol-water due to strong hydrogen bonding between water molecules and alizarin, which was further confirmed by the efficient coupling of alizarin to TiO2 nanoparticles in the 1:1 binary mixture of ethanol-water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号