首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了准确获取空间目标跟踪、视觉导航等领域中目标的三维姿态,进行了目标三维姿态单目视觉测量方法研究.提取图像目标的典型特征点构造出直角三角形,并通过其边长比例先验信息以及弱透视成像模型推导出目标三维姿态的单目解算算法.与传统测姿方法相比,该算法在相机焦距等内参量未知条件下依然可解算姿态,增大了测姿应用范围;与传统迭代测姿方法相比,避免了循环迭代求解过程,无需设置迭代初值,提高了解算效率.数值仿真试验结果表明目标在离相机1~3km成像时姿态测量误差低于1.5°;实际图像序列测量结果表明目标俯仰角和偏航角测量结果拟合残差小于1°,翻滚角拟合残差小于2°.实验验证了算法的正确性和稳定性,表明该算法在内参量未知条件下能有效测量中远距离成像目标三维姿态.  相似文献   

2.
双目视觉作为一种非接触三维(3D)测量技术,其位姿标定结果的好坏将直接影响3D物体测量的精度。基于迭代最近点(ICP)算法获得两组点集之间平移和旋转参数的原理,提出了一种在传统双目位姿标定结果的基础上补偿双目标定矩阵改善精度的方法。介绍了摄像机模型、双目视觉测量模型和ICP算法的基本思想。用双目摄像机标定的外参数和相同的靶标坐标系获得双目视觉位姿矩阵,在此提出基于ICP算法获得两组点集的旋转平移矩阵补偿双目位姿矩阵的方法,以及相应的靶标角点坐标投影误差分析模型。双目摄像机采集9组5×7个角点的靶标标定图像,应用ICP算法补偿双目位姿矩阵,并采用误差模型对9组标定结果进行了分析,双目结构光标定改进实验结果表明,应用ICP算法补偿双目标定模型能显著地提高双目标定的精度。  相似文献   

3.
多相机系统的标定是立体视觉测量中的一个重要问题。而当各相机间公共视场较小或无公共视场时,标定参照物不能同时出现在所有相机的公共视场,因此无法求解系统中多相机的相对位置关系。针对该类问题,论文在二维靶标标定法的基础上,提出了一种基于两轴转台的无公共视场相机位置关系的求解方法。将待标定系统固定在转台上,利用转台转动确定靶标坐标系与转台坐标系之间的相对关系;通过转动转台使二维靶标依次进入每个相机视场以分别确定转动后每个相机在靶标坐标系中的位置,并记录转动的角度;最后,结合靶标坐标系与转台坐标系关系,求解各相机之间的相对位置关系。实验结果表明,该方法具有可操作性,解算误差在0.5%以内,可较准确地确定多个光轴之间角度较大的非共视场相机位置关系。  相似文献   

4.
近年来,EPnP算法作为一种相机位姿估计的解析算法,因其较低的计算复杂度而得到广泛的关注,但该算法对图像噪声的稳健性不强。提出了一种基于EPnP算法的迭代算法,即IEPnP算法。IEPnP算法保留了EPnP算法的主要思想,构造了4个虚拟控制点,利用弱透视投影模型获得相机的初始位姿,计算出虚拟控制点在相机坐标系下的坐标,然后通过高斯-牛顿法对虚拟控制点在相机坐标系下的坐标进行优化求解,最终通过解决绝对定向问题来获得对相机位姿的估计。IEPnP算法简化了EPnP算法的计算过程。在不同的图像噪声水平下进行仿真实验,结果表明,相比于EPnP算法,IEPnP算法不仅保持了较高的计算效率,而且对图像噪声具有更强的稳健性。  相似文献   

5.
《光学学报》2021,41(3):72-82
针对大多数测量实施试验中测量条件的局限性,提出一种基于双相机联合无同名点的双目视觉运动参数测量方法,采用该方法计算位姿初值并采用全局正交迭代算法优化初值。该测量方法在实现过程中不需要同名点参与,只需要两台相机的视场内有6个以上的目标合作标志点,就可得到验证器在运动过程中的位置和姿态等参数。对航天器悬停、避障和着陆阶段进行试验,将该测量方法与同一工况试验下基于同名点的双目位姿测量方法、基于正交迭代的单目位姿测量方法获取的结果和全站仪打点获得的默认真值进行对比,得到姿态测量误差小于0.5°,位置测量误差小于0.01 m。  相似文献   

6.
针对未标定相机的位姿估计问题,提出了一种焦距和位姿同时迭代的高精度位姿估计算法。现有的未标定相机的位姿估计算法是焦距和相机位姿单独求解,焦距估计精度较差。提出的算法首先通过现有算法得到相机焦距和位姿的初始参数;然后在正交迭代的基础上推导了焦距和位姿最小化函数,将焦距和位姿同时作为初始值进行迭代计算;最后得到高精度的焦距和位姿参数。仿真实验表明提出的算法在点数为10,噪声标准差为2的情况下,角度相对误差小于1%,平移相对误差小于4%,焦距相对误差小于3%;真实实验表明提出的算法与棋盘标定方法的精度相当。与现有算法相比,能够对未标定相机进行高精度的焦距和位姿估计。  相似文献   

7.
针对航空、航天等领域大型装备组装对接过程中的大尺度空间物体实时的位姿测量需求,对现有基于面阵成像器件摄影测量系统的二维测角功能进行分解与重构,提出一种基于正交柱面成像的位姿测量新方法。该方法充分发挥线阵CCD器件一维角度分辨率高、采集速度快、处理简便等优势,以正交柱面成像光路简化了相机结构,并采用非参数标定方法校正了柱面成像畸变。针对空间物体姿态测量的坐标同步问题,研究了基于扩展卡尔曼预测的实时识别跟踪方法,实现了多个目标并行测量,并通过基于Rodrigues参数的姿态解算模型实现了实时姿态测量。实验结果表明,该测量方法得到的空间点三维坐标测量精度优于0.5mm,空间物体姿态解算在偏航、横滚、俯仰三个方向的最大测量误差分别为0.20°,0.12°,0.23°,具有较高的姿态测量精度。  相似文献   

8.
《光学学报》2021,41(6):157-165
针对在轨服务任务如何在近距离处获取空间非合作目标的相对位置和姿态的难题,提出一种三目立体视觉测量方法。首先利用三台呈等边三角形布置的大视场可见光相机获取图像;然后采用所提方法对特征点进行匹配;接着采用RANSAC方法解算被测目标在世界坐标系下的位姿参数;最后通过对非合作卫星模型的静止、位置移动和姿态转动进行实验。实验结果表明,静止状态下的相对位置精度优于2.2 mm,相对角度测量精度优于0.3°;当模型位置移动时,绝对位置精度优于3 mm;当模型姿态转动时,相对位置精度优于5.6 mm,相对角度测量精度优于1.7°,说明所提方法可以改善双目立体视觉技术在测量角度大的区域易出现测量盲区、特征点定位误匹配和测量视场有限的不足。  相似文献   

9.
基于去离群点策略提高目标位姿测量精度   总被引:1,自引:0,他引:1  
针对在单目视觉目标位姿测量过程中,特征点提取出现离群点的情况,提出一种基于去除离群点策略的位姿测量方法(ORPE).建立了以特征点误差极大极小为原则的最优化目标函数,通过确定特征点最大观测误差值边界,判定并去除离群点,由此可消除离群点误差对位姿测量的影响.仿真实验使用ORPE对1 m×1 m × 1 m的立方体目标进行位姿测量,验证了算法的正确性;使用ORPE测量Boeing飞机模型的位姿,平均姿态角误差2.07°,平均位移误差1.6%.通过和最小二乘测姿法(LSPE)结果对比分析可得ORPE法误差小于LSPE法误差.表明ORPE能有效去除离群点,同时提高佗姿测量精度.  相似文献   

10.
为了提高平面、近平面和近线等奇异构型目标点的位姿估计精度和稳定性,提出了面向奇异构型目标点分布的位姿估计算法。首先,选择距离最远的两个点作为基本目标点,将n点划分为n-2个三点子集。其次,根据三点子集的几何关系构建辅助点,旨在增加透射相似三角形法的几何约束,进而求得较为准确的相机位姿初值。最后,结合EPnP算法和高斯牛顿算法进行迭代优化,通过奇异值分解求得最终位姿。测量实验结果表明,当平面目标点数n=4时,正交迭代算法、EPnP算法和IEPnP算法的像方平均重投影误差分别为0.062 mm、0.324 mm和2.238 mm,本文算法的像方平均重投影误差为0.003 mm,有效提高了奇异构型下目标点的位姿估计精度和稳定性。  相似文献   

11.
针对机器人大范围位姿精准测量问题,提出一种大视场位姿测量的变焦测量方法。利用变焦图像匹配点的单应矩阵进行变焦内参动态计算,根据变焦前后靶标位姿求解相机坐标系变换,给出与变焦参数相关的PnP算法,考虑畸变后进行参数优化,并提出缩放和对焦两步变焦控制策略。提出一种基于图像模板的靶标板位姿测量算法,在靶标可视姿态均能稳定检测并区分标志点。对变焦测量系统进行误差测量实验和大场景跟踪实验,结果表明,不同变焦参数下均具有较高的单点测量精度,平均位置精度最高21.8μm,在400~1600 mm范围误差0.09mm,精度较高,使用的变焦相机可实现178.7461~9022.31mm测量。该方法实现了相机活动范围受限而测量范围可拓展的位姿测量。  相似文献   

12.
目前,靶场姿态测量以多台套交会测量为主,对于单站姿态测量尚没有较好的解决方案。为了解决该问题,以投影轴对称目标为例,提出了一种基于中轴线像长匹配的单站姿态测量方法。将透视投影拓展为2种等效形式,将体现目标姿态状态的中轴线向像面透视投影,可获得中轴线的投影像长或在等效物面的等效物长,根据目标中轴线的先验长度、相机内外参数及成像信息,经像长匹配即可获取目标的偏航角和俯仰角;实际工程试验验证了该算法的可行性,偏航角精度为1.7°,俯仰角精度约1°,满足靶场单站测姿需求;并对姿态测量模型关键因素进行了误差分析。该方法可适用于非投影轴对称目标。  相似文献   

13.
为了克服图像传感器在位姿测量中存在响应速度与精度相互制约以及相应图像处理算法复杂的缺陷,提出一种基于单个位置敏感探测器的目标空间位姿测量方法.首先建立以位置敏感探测器光敏面中心为原点的传感器坐标系并在该坐标系下定义空间姿态角,然后将合作目标上8个循环交替点亮的红外LED光源作为探测对象,特征发光点经过会聚镜头成像于探测器光敏面上,经信号处理得到各点二维像坐标,并结合光源相对位置关系最终解算得到目标在传感器坐标系下的空间位置和姿态.在对系统稳定性进行验证后完成了位置平移与角度旋转的测量实验.实验结果表明:提出的方法在视场角为16.3°的范围内探测距离可达10m,沿深度方向的位置测量绝对误差最大为36.2mm,其他方向位置测量平均绝对误差最大为7.1mm,角度测量绝对误差优于2°.该方法解算过程简单、实时性强,测量更新频率为100Hz,可以满足位姿检测的高速要求.  相似文献   

14.
陈宇中  肖虎  张伟  胡永明 《应用光学》2009,30(5):827-830
光纤陀螺是一种速率陀螺,其适合用来对转台作低速测试.根据转台所用编码器的参数,分析了转台不同角速率下光纤陀螺所需的数据刷新率及陀螺零偏稳定性对测量结果的影响.用光纤陀螺测量了转台以1°/s角速率转动时的角速率波动,对陀螺输出数据作了功率谱分析,并与示波器直接测量的结果进行了对比,结果表明光纤陀螺的测量结果是正确的;应用光纤陀螺对转台以(0.05°/s,1°/s)范围内固定角速率转动时的角速率波动进行了测量,通过对测量结果的分析表明:光纤陀螺可以用于转台的测试,它能测量出转台低速转动时的角速率波动;最后给出了光纤陀螺对转台角速率测试的下限.  相似文献   

15.
由IMU或电子罗盘组成的无人机航姿测量系统易受载体有害加速度或周围局部磁场干扰导致姿态角解算不准确。针对该问题提出将自适应扩展卡尔曼滤波算法应用于该系统。在卡尔曼滤波算法中提出引入分段函数构造自适应测量噪声方差阵。相比于传统噪声方差阵的阈值判断方法,该方法提高了传感器信息的利用率,进一步减小了外界干扰对系统姿态估计的影响,最终提高了姿态角的解算精度。最后针对该方法进行了仿真分析和无磁转台实验验证,仿真和实验结果表明,该方法能有效提高无人机航姿测量系统的抗干扰能力,具有一定的应用价值。  相似文献   

16.
非合作目标航天器的位姿测量一直是各类复杂航天任务中所需解决的关键难题之一。传统的姿态测量算法多采用欧拉角以及旋转矩阵的方式描述目标位姿,计算参数较多,算法形式也相对复杂。针对这个问题,通过单目视觉识别出具有矩形结构特征的目标航天器的一个矩形面,然后在马达代数框架下,根据该矩形面两条平行边所在直线方程的差值信息直接计算出目标姿态参数,最终将姿态解算问题简化为一组四元线性方程组的求解。该算法无需知道目标尺寸,计算形式简洁,实时性高,同时也能很好地保证结果的正交性。数值仿真以及地面验证实验结果表明,该算法具有较强的稳定性,测量精度能够满足测控要求,在交会近距离范围内受两航天器间相对距离的影响较小。  相似文献   

17.
为了实现室内运动目标位姿的高精度测量,建立了一套激光投影成像式位姿测量系统.该系统利用两两共线且交叉排列在同一平面上的点激光投射器作为合作目标捷联在运动目标上,通过与光斑接收幕墙的配合共同组成运动目标位姿测量基线放大系统,利用高速摄像机实时记录幕墙上投影光斑的位置,利用摄像机标定结果求解投影光斑的世界坐标,利用投影光斑之间构成的单位向量建立运动目标位姿解算模型.最后,根据测量原理推导了图像坐标提取、摄像机外部参数标定、光束直线度与目标位姿解算结果之间的误差传递函数.实验结果表明,当摄像机的视场范围为14 000mm×7 000mm时,测量系统的姿态角测量精度为1′(1δ),位置测量精度为5mm,且误差大小与目标位姿测量误差传递函数理论计算值一致,验证了本文提出的目标位姿测量方法与测量误差传递模型的准确性,能够满足目标位姿测量高精度的要求.  相似文献   

18.
针对平面目标姿态测量问题,提出了一种基于棋盘靶标的单目视觉测量方法,设计安装简单,在保证测量精度的同时简化了测量过程。首先,基于棋盘靶标对摄像机进行标定;然后,利用单应性条件得到外参矩阵,并利用Givens矩阵对外参矩阵进行分解,求得姿态角;最后,在靶标任意安装的情况下,基于旋转矩阵约束条件研究了安装偏差的自标定方法。实验结果表明:距离3m时,在静态测量时垂直光轴方向姿态角的测量精度可达0.02°,其他两个姿态角的测量精度可达0.05°;动态测量时垂直光轴方向姿态角的测量精度可达0.1°,其他两个姿态角的测量精度可达0.5°。  相似文献   

19.
为了有效解决单圆特征目标位姿解存在二义性的问题,提出了基于角度约束的目标位姿虚假解的消除方法。在相机标定好的前提下,在水平面上平移相机系统获得两幅或两幅以上具有圆特征的目标物图像,以圆形特征目标物的真实姿态角在相机坐标系下保持不变作为约束,可以有效剔除虚假解。可将该方法应用于末端安装摄像机的工业机器人,操控机器人做已知的平移运动从而有效剔除圆特征目标位姿的虚假解。通过实验验证,圆特征目标姿态角的绝对误差小于0.5°,然后可通过真实姿态选出对应目标的真实位置。该方法简单易行,不需要额外的高昂设备就能精确地定位出物体的真实位姿,成功率可达100%。  相似文献   

20.
针对平面目标姿态测量问题,提出了一种基于棋盘靶标的单目视觉测量方法,设计安装简单,在保证测量精度的同时简化了测量过程。首先,基于棋盘靶标对摄像机进行标定;然后,利用单应性条件得到外参矩阵,并利用Givens矩阵对外参矩阵进行分解,求得姿态角;最后,在靶标任意安装的情况下,基于旋转矩阵约束条件研究了安装偏差的自标定方法。实验结果表明:距离3m时,在静态测量时垂直光轴方向姿态角的测量精度可达0.02°,其他两个姿态角的测量精度可达0.05°;动态测量时垂直光轴方向姿态角的测量精度可达0.1°,其他两个姿态角的测量精度可达0.5°。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号