首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
采用激光诱导击穿光谱(LIBS)技术定量分析缅甸翡翠中Fe元素的浓度。选择Fe元素的275.57 nm光谱线作为定量分析谱线,选取Si元素的288.17 nm光谱线作为内标谱线,选取12个缅甸翡翠样品作为研究对象,以其中9个样品绘制了传统定标法和内定标法的Fe元素定标曲线,并将定标曲线用于3个检验样品的Fe含量的实际预测。实验结果表明,采用传统定标方法时,定标样品光谱强度的相对标准偏差(RSD)在1.4%~8.3%之间,所建立的Fe元素浓度含量定标曲线的拟合相关系数R2为0.979,使用该方法建立的定标曲线对3个检验样品中Fe元素含量进行测定,最大相对误差为10.6%;而采用内定标法时,定标样品光谱强度的比值(IFe/ISi)的相对标准偏差(RSD)在0.9%~5.7%之间,Fe的拟合相关系数R2达到0.989,样品中Fe元素的测定相对误差均可降低到7%以下。结果证明,利用内定标法定量分析翡翠中Fe的含量比传统定标法相对误差更小,采用LIBS技术结合内定标法更适于缅甸翡翠样品中Fe元素定量分析。  相似文献   

2.
为了提高铝合金定量分析的精度,将激光诱导击穿光谱技术与多变量线性回归、中值高斯核支持向量机回归及标准化偏最小二乘回归等方法相结合,建立铝合金中 Cu元素定量分析模型。对采集的LIBS光谱进行三阶极小值去背景和小波阈值降噪处理,从而提高LIBS光谱的信背比。将处理后数据筛选最佳训练集、预测集并用多变量线性回归、中值高斯核支持向量机回归法和标准化偏最小二乘拟合回归等建立定标模型。选用 Cu Ⅰ 324.80 nm,Cu Ⅰ 327.43 nm两条特征谱线以及323~329 nm范围内的LIBS光谱数据进行定量分析,对比分析三种LIBS定量分析模型的拟合系数(R2)、定标均方根误差(RMSEC)、预测均方根误差(RMSEP)和平均相对误差(ARE)等。结果表明,相对于多变量线性回归和中值高斯核支持向量机回归法两种LIBS定量分析模型,对于铝合金中的Cu元素定量分析,标准化PLSR模型的精度和准确度都有明显的提高,并且LIBS定标曲线的R2,RMSEC,RMSEP和ARE分别为0.997,0.014 Wt%,0.129 Wt%和3.053%。研究结果表明在提高定标模型精确度与泛化性方面,标准化PLSR方法更具有优势,能够有效地减小参数波动和自吸收效应对铝合金定量分析的影响。  相似文献   

3.
强度比定标法分析激光诱导击穿碳谱线   总被引:7,自引:1,他引:6  
 利用激光诱导击穿光谱技术,使样品在大气常压环境下被击穿形成等离子体,探测等离子体发射信号。选择混合样品所含的基体元素硅作为内标元素,分别根据碳谱线峰值强度、分析线和内标线峰值强度比建立不同的定标曲线。对两种定标曲线的拟合度、测量重复性以及定量分析结果准确度进行了研究。研究结果表明:强度比定标法在一定程度上可以提高定标曲线的拟合度和测量重复性,减小强度比定标法定量分析结果的误差,提高测量准确度。  相似文献   

4.
采用共轴双脉冲激光诱导击穿光谱(DP-LIBS)技术对3种植物油中的重金属铬(Cr)含量进行定量分析.对实验配制的24个样品,来用桐木木片对其中的Cr进行富集,烘干后进行LIBS试验.选取Cr I 425.39 ran为定量分析谱线,CN分子谱线(421.49 nm)、Ca原子谱线(422.64 nm)以及它们谱线强度之和为内标线,分别建立了Cr的基本定标法、单谱线内标法和双谱线内标法的定标曲线,并用验证样品对它们进行检验.研究结果表明,3种植物油的基本定标曲线的拟合度R~2在0.97以上,低浓度验证样品预测的相对误差较大;采用单谱线内定标法时,定标曲线拟合度R~2在0.98以上,验证样品预测的相对误差较基本定标法有所降低;来用双谱线内标时,大豆油、花生油和玉米油的内定标曲线拟合度R~2分别为0.995,0.992和0.996,2个验证样品预测的相对误差分别为12.81%,1.73%,9.19%,6.05%和6.23%,6.69%.由此可见,采用双谱线内标法能有效减小定量分析误差,提高LIBS对植物油中Cr元素的预测能力.  相似文献   

5.
针对工业现场和野外恶劣环境下快速检测的需求,设计并搭建了基于光纤激光器的便携式激光诱导击穿光谱实验系统.采用迭代小波变换去背景算法对光纤激光器的高重复频率造成的高的连续背景干扰进行消除.对比了去背景前后攀钢生铁样品中的Mn元素的谱线,发现Mn元素的4条特征谱线的定标曲线决定系数分别由0.988、0.985、0.982和0.992提高到了0.994、0.994、0.994和0.995;采用留一交叉验证得到的均方根误差分别从0.123、0.146、0.101和0.083,降低到了0.072、0.085、0.062和0.073.结果表明,采用该迭代的小波变换去背景算法,能够有效地去除连续背景干扰,提高回归模型的准确性,进而提高激光诱导击穿光谱定量分析的准确度.  相似文献   

6.
利用激光诱导击穿光谱技术对CuSO4溶液中的Cu元素浓度进行实验测量。利用配置的七种浓度的CuSO4溶液,采用统计探索性数据分析方法给出了Cu元素定标曲线,其拟合度系数R2大于0.98,激光诱导击穿光谱的平均相对偏差值为6.9%,Cu元素的平均最小检测限为12ppm。利用去一交互检验方法采用分析谱线CuⅠ324.75nm和CuⅠ327.40nm对应的七种溶液的平均测量相对误差分别为6.52%和5.86%。当Cu元素浓度在10ppm时实验相对误差较大,其值为10.3%,而浓度达到2 000ppm时相对误差值减小,仅为1.1%,说明LIBS技术在溶液较低元素浓度检测方面的准确度有待提高。研究结果表明激光诱导击穿光谱技术在环境水污染重金属元素检测方面具有潜在的应用前景。  相似文献   

7.
锰元素是植物所需的微量元素之一。采用激光诱导击穿光谱(laser-induced breakdown spectroscopy,LIBS)技术对土壤中锰元素进行定量分析。以46个土壤样品为研究对象,获取土壤激光诱导击穿光谱数据,选取锰元素403.1 nm的特征谱线为分析线。根据谱线强度与元素浓度建立定标曲线,相关系数仅为0.78,定标结果说明,由于土壤样品成分的复杂性,锰元素浓度受土壤基体效应影响严重,应根据锰元素在土壤中的存在形式,选取相关元素,建立多元非线性回归定量分析方法,消除基体效应,从而提高LIBS测量的准确性。在多元非线性回归方法中分别考虑碳和铁元素对锰元素浓度的影响。与定标曲线相比,在考虑碳和铁元素对锰元素影响时,LIBS预测浓度与参考浓度的相关系数为0.97,相对误差为3.2%~10.3%,测量的准确度得到提高。实验结果表明,将多元非线性回归方法和激光诱导击穿光谱技术结合可以对土壤中微量锰元素进行定量分析。  相似文献   

8.
利用激光诱导击穿光谱定量分析了铝合金中多种元素的成分。采用Nd∶YAG脉冲激光器,在空气环境下烧蚀铝合金固体样品获得等离子体。利用多通道光栅光谱仪和CCD检测器对200~980 nm波长范围的光谱进行同时检测。研究了检测时延、激光脉冲能量、元素深度分布对光谱强度的影响,考虑这些因素之后对实验参数进行了优化。在优化的实验参数下对国家标准铝合金样品中的八种元素Si,Fe,Cu,Mn,Mg,Zn,Sn及Ni进行了定标,并利用定标曲线对一种铝合金样品进行了定量分析。实验结果表明,测量结果的相对标准偏差(RSD)最大为5.89%,相对误差在-20.99%~15%范围内,说明对铝合金样品成分进行定量分析,激光诱导击穿光谱是一种有效的光谱分析工具,但是分析结果的准确度仍需要提高。  相似文献   

9.
激光诱导击穿光谱技术(LIBS)用于检测时,由于谱线多且复杂,存在许多冗余的信息,这些都会对定量分析造成影响。因此,提取有效的特征变量在LIBS的定量分析中具有非常重要的意义。对CaCl2溶液中的Ca元素进行光谱特征选择方法分析,对比单变量模型、偏最小二乘回归和CART回归树定标模型的准确度和稳定性。针对水体表面的波动性较大,光谱稳定性差,同时光谱受基体效应和自吸收效应影响等问题,首先采用单变量模型得到的拟合系数(R2)仅有0.933 2,训练均方根误差(RMSEC)、预测均方根误差(RMSEP)和平均相对误差(ARE)分别为0.019 2 Wt%,0.017 7 Wt%和11.604%。经偏最小二乘回归优化后,模型R2提高到0.975 3,RMSEC,RMSEP和ARE分别降低到0.010 8 Wt%,0.013 Wt%和7.49%。为了进一步提高定量分析的准确度,建立CART回归树定标模型。该方法在构建树模型时,通过平方误差最小化准则,从复杂的光谱信息中选取最优的特征变量组合做分类决策,从而建立Ca元素的定标曲线。通过CART回归树的变量选择,特征变量个数从100个减少到6个,变量的压缩率达到了94%,显著降低了无关谱线的干扰,回归树模型的相关系数R2,RMSEC,RMSEP和ARE分别为0.997 5,0.003 5 Wt%,0.006 1 Wt%和2.500%。相较于传统的单变量模型与偏最小二乘回归,CART回归树模型具有更高的精度、更小的误差。通过对特征变量的有效筛选,剔除无关信号的干扰,显著降低了基体效应和自吸收效应对LIBS定量分析的影响,提高了定量分析的准确度和稳定性。  相似文献   

10.
作为煤质评价的重要指标之一,热值的快速、准确测量对电厂燃煤锅炉的优化燃烧和经济运行至关重要。采用激光诱导击穿光谱(LIBS)技术结合BP神经网络定量分析模型和聚类分析,以35个煤粉样品作为研究对象进行热值的定量分析。基体效应对LIBS光谱数据的显著影响,针对基于某类煤粉样品所建立的定标曲线不能直接用于不同煤种的定量分析,采用K-means聚类方法根据热值、灰分、挥发分把样品分为三类对训练集和预测集样品进行优化选择。通过谱线强度和热值变量相关性分析,同时考虑特征谱线的物理意义,最终提取12条元素谱线的峰值强度作为输入参数,建立BP神经网络模型对燃煤热值进行预测。定标结果表明,建立的神经网络模型具有良好的定量分析能力,定标曲线拟合度R2为0.996,热值预测值的相对误差低于3.42%,多次重复测量的相对标准偏差在4.23%以内。对聚类分析中3类样品具有不同的预测能力,采用峰值强度作为输入参数时,能够在一定程度上减弱试验参数波动和基体效应造成的影响。定量分析结果的重复性和准确性可以通过对不同类别的煤种分别建立BP神经网络模型来进一步改善。LIBS技术结合BP神经网络可以对煤粉热值进行定量分析,在现场在线/快速检测领域具有很好的应用价值和潜力。  相似文献   

11.
应用近红外光谱技术,以偏最小二乘算法,计算预测了37种生药药材甲醇提取物的抗氧化活性。以交叉验证相关系数(R2),交叉验证误差均方根(RMSECV)为指标,考察、比较了光谱预处理方法对模型效果的影响,以预测误差均方根(RMSEP)和相对分析误差(RPD)考核了样本的预测效果,采用1,1-二苯基-2-苦肼基(DPPH)法进行了验证。研究表明,采用一阶导数+矢量归一化预处理法和筛选的近红外波段建模,预测性能最优,校正模型的R2为0.896 0,RMSECV为4.35%;预测样本的RMSEP为3.62%,RPD为2.38。近红外光谱分析技术便捷快速,可信度较高,可以用于生药抗氧化性质的整体评价。  相似文献   

12.
以96批栀子不同炮制品为研究对象,高效液相色谱测定栀子苷含量为参考值,利用近红外光谱仪积分球漫反射测定其光谱图,建模波段取8 660~7 500,6 650~5 600和4 900~4 000 cm-1,以标准正态变换(SNV)和二阶导数法(2nd derivative)为预处理方法,主成分数为8,采用偏最小二乘法(PLS)对83批栀子样品建立栀子苷的定量校正模型,最终以13批栀子不同炮制品对模型进行验证。结果,定量模型的内部交叉验证决定系数(R2)为0.992 85,校正均方差(RMSEC)为0.240,预测均方差(RMSEP)为0.254,内部交叉验证均方差(RMSECV)为0.386 91,RMSEP/RMSEC=1.06。模型验证得到的相对分析误差(RPD)为8.81,绝对偏差范围-0.39%~0.23%,说明模型预测性较好。通过相关系数法,优选样品装样量、扫描次数、重复次数、分辨率实验条件;并由近红外一阶导和二阶导图,除去温湿度和样品水分影响波段,结合栀子苷对照品近红外光谱图,确定建模波段。首次利用NIRS法建立栀子不同炮制品栀子苷定量校正模型,方法简单快速,模型稳定可靠、准确性高,可同时应用于不同炮制品栀子中栀子苷含量的预测。  相似文献   

13.
本文主要对近红外光谱技术在快速测定连翘提取物中连翘苷含量的应用进行了研究。利用近红外漫反射光谱法采集样品的近红外光谱,以HPLC分析值作为参考值,采用偏最小二乘法(PLS)建立连翘苷含量的定量校正模型,并用未知样品对该模型进行验证。所建模型的相关系数(R2)、校正均方差(RM-SEC)和内部交叉验证均方差(RMSECV)分别为0.9745、0.117和0.2392;经外部验证,预测相关系数(r2)和预测均方差(RMSEP)分别为0.9788和0.0776。结果表明该方法操作简便,无污染,结果准确可靠,可用于连翘提取物中连翘苷含量的快速测定。  相似文献   

14.
提出了一种基于近红外(NIR)光谱的黄酮类提取物抗氧化活性计算预测新方法。采用1,1-二苯-2-苦肼基(DPPH)法测定28种黄酮类中药材提取物的抗氧化活性,并在4 000~10 000 cm-1范围扫描样品的红外光谱,采用偏最小二乘(PLS)算法建立了黄酮类组分近红外光谱与抗氧化活性之间的校正模型。建模过程中,以交叉验证相关系数(R2),交叉验证误差均方根(RMSECV)为指标,确定了用于建模的最优近红外波段和光谱预处理方法。校正模型的RSECV为9.50%,R2为 0.901 7,预测误差均方根(RMSEP)为14.8%。该方法快速无损、操作简便,可用于中药及天然产物提取物抗氧化活性的快速评价。  相似文献   

15.
采用激光诱导击穿光谱技术分析安徽怀远农亢农场土壤样品中微量元素Mn的含量分布情况。实验中选取403.1 nm作为Mn元素的分析线为,土壤中基体元素Fe作为内标元素,选取的分析线为407.2 nm。选取10个土壤样品分别用传统定标方法和内标法建立定标曲线,并对4个待测样品浓度进行预测。实验结果表明,传统定标方法建立的定标曲线的拟合相关系数r为0.954,检测限为93 mg·kg-1,待测样品的测量相对误差最大为5.72%;而采用内标法建立的定标曲线的拟合相关系数r为0.983,测量的相对误差减小到4.1%,检测限为71 mg·kg-1。说明采用LIBS技术对土壤中微量元素Mn检测的可行性,同时,内标法一定程度上可提高测量的精确性。  相似文献   

16.
建立一种伤疖膏制备过程提取液中黄芩苷动态含量快速测定的近红外光谱分析方法,近红外透射光谱法扫描得到65组伤疖膏制备过程中提取液的近红外光谱图,以提取液中黄芩苷的HPLC测量值作为对照值,采用偏最小二乘回归算法(PLSR)建立NIR光谱与对照值的校正模型。校正模型主成分数为8,交叉验证均方根差(RMSECV)为0.006 8,相关系数(r)为0.999 1。应用校正模型对预测集的30组样品进行黄芩苷含量预测,所得预测均方根差(RMSEP)为0.009 2,r为0.998 7。结果表明,该方法快速、准确,为复方膏剂制备过程中化学成分快速定量和质量控制提供了方法和依据。  相似文献   

17.
羊肉嫩度傅里叶变换近红外光谱偏最小二乘法定量分析研究   总被引:11,自引:0,他引:11  
以从内蒙、宁夏、甘肃、新疆4个肉羊产区筛选的有代表性的98份羊肉样品为试材,应用傅里叶变换近红外光谱技术探讨了羊肉嫩度无损检测的方法。以模型决定系数(r2)、校正标准差(RMSECV)和预测标准差(RMSEP)为模型精度评价指标,采用偏最小二乘法(PLS)对近红外光谱信息与样品的质构仪剪切力值进行了拟合,确定了最佳的光谱预处理方法、主成分数和波段范围。结果表明:所选98个羊肉样品的剪切力值分布范围为1.673~6.631 kg,其中75%以上的样品剪切力值在2~5 kg,基本覆盖了我国现有的肉羊嫩度值分布;在11 995~5 446 cm-1和4 601~4 246 cm-1的波段范围内,最佳主成分数为10,光谱经矢量归一法处理后,建立的羊肉嫩度模型精度最高,r2达到86.2%,RMSECV为0.445;用此模型对预测集29个样品进行预测,预测值与实测值的相关系数r达到0.87,预测平均偏差为0.385,RMSEP为0.524。  相似文献   

18.
为实现快速无损地检测小麦品质设计了基于光栅技术的近红外检测系统,测试了该系统的准确性、重复性和稳定性,选取MPA光谱仪为参比仪器,分别采集56份小麦样品的光谱,建立偏最小二乘回归模型并验证。该系统的四个模型的决定系数R2分别为92.38%,93.48%,93.16%,94.44%,交叉验证标准差RESECV为0.405,0.374,0.383,0.346,相对分析误差RPD为3.62,3.39,3.82,4.24;预测集验证模型的R2为96.97%,94.22%,96.62%,96.34%,预测标准差RMSEP为0.221,0.305,0.233,0.243。MPA光谱仪的建模结果R2 为95.99%,RESECV 为0.293,RDP为5;预测集验证模型的R2为98.31%,RMSEP为0.165。实验表明:小麦品质近红外检测系统所得模型具有良好的预测性,稳定性和重复性;所得光谱波长与吸光度具有重现性;其模型对平均光谱的预测效果优于单张光谱;该系统工作稳定,性能优良,可应用于小麦品质质量检测。  相似文献   

19.
为了实现甜菜依据含糖量定等分级,甜菜收购环节的按质论价,促进甜菜制糖行业的良好健康发展,应用近红外光谱技术对甜菜糖度的快速检测进行了系统研究,确定了一种快速、无损、准确的测量甜菜糖度的方法。采集具有代表性的28个甜菜品种,820个甜菜样品作为校正集,70个样品作为预测集,扫描得到甜菜校正集样品的近红外原始光谱,选择合适的光谱预处理方法,采用偏最小二乘法建立甜菜糖度的定量预测数学模型,以校正模型的内部交互验证均方根误差(RMSECV)、决定系数(R2)和外部预测标准误差(SEP)为指标对模型的性能进行评价,并对模型的预测效果进行了比较。采用一阶导数和标准正态变量变换对光谱进行预处理并结合偏最小二乘法所建立的定量预测数学模型的预测能力较好。甜菜糖度定量校正数学模型的模型决定系数为0.908 3,内部交互验证预测均方根误差为0.376 7。用此数学模型对预测集70个样品进行预测,预测值与实测值的相关系数达到0.921 4,预测标准误差为0.439,预测值和实测值之间不存在显著性差异(p>0.05)。结果表明:近红外光谱法作为一种简单、快速、无损、环保的检测方法,能够良好的评价甜菜的糖度。建立的模型具有很高的精确性,可以满足甜菜糖含量测定的需要,该方法可以实现甜菜收购环节的定等分级和按质论价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号