首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 203 毫秒
1.
提出了基于连续投影算法(successive projections algorithm,SPA)、载荷系数法(x-loading weights,x-LW)和格拉姆-施密特正交(gram-schmidt orthogonalization,GSO)提取特征波长的高光谱成像技术检测番茄叶片早疫病的方法。首先获取380~1 023 nm波段范围内70个健康和70个染病番茄叶片的高光谱图像信息,然后提取健康和染病叶片感兴趣区域(region of interest, ROI)的光谱反射率值,建立番茄叶片早疫病的最小二乘-支持向量机(least squares-support vector machine,LS-SVM)鉴别模型,建模集和预测集的鉴别率都是100%。再通过SPA 、x-LW和GSO提取特征波长(effective wavelengths,EW),并建立EW-LS-SVM和特征波长-线性判别分析(ew-linear discriminant analysis,EW-LDA)鉴别模型。结果显示,每个模型的鉴别效果都很好,EW-LS-SVM模型中预测集的鉴别率都达到了100%,EW-LDA模型中预测集的鉴别率分别是100%, 100%和97.83%。基于SPA, x-LW和GSO所建模型的输入变量分别是4个(492,550,633和680nm),3个(631,719和747 nm)和2个(533和657 nm),较少的特征波长便于实时检测仪器的开发。结果表明,高光谱成像技术检测番茄叶片早疫病是可行的,SPA,x-LW和GSO都是非常有效的特征波长提取方法。  相似文献   

2.
玉米种子穗腐病是危害玉米产量的主要病害之一。利用近红外光谱开展了玉米种子穗腐病判别模型研究。246粒玉米种子由吉林省农业科学院海南育种基地提供,其中96粒玉米种子为穗腐病染病样本,其他150粒玉米种子为同种玉米正常样本。利用MATRIX-Ⅰ型傅里叶近红外光谱仪采集了样本800~2 500 nm范围的近红外光谱信息,并对样本近红外光谱数据利用多元散射校正(MSC)进行预处理。结合玉米内部有机物质的近红外光谱的敏感波段和样本近红外光谱吸收峰挑选了4个优选区间,并采用相关系数法(CA)、连续投影算法(SPA)和竞争性自适应重加权算法(CARS)三种不同原理的特征波长提取算法分别提取了4(1 362,1 760,2 143和2 311 nm)、5(1 227,1 310,1 382,1 450和1 728 nm)和10(1 232,1 233,1 257,1 279,1 313,1 688,1 703,1 705,2 302和2 323 nm)个特征波长。以提取得到的特征波长作为玉米种子穗腐病判别模型输入变量,用0-1(染病-正常)表示样本染病状况作为输出真实值建立支持向量机(SVM)模型,使用网格搜索法结合十折交叉验证法对模型参数进行优化。结果表明,CA-SVM,SPA-SVM和CARS-SVM三种判别模型中训练集和测试集建模准确率均在90%以上。该研究成果为玉米种子病害诊断装置提供了模型基础,且针对优选区间进行特征波长选择的方式也可以为建立其他种子病害判别模型提供参考。  相似文献   

3.
提出了应用光谱和纹理特征的高光谱成像技术早期检测番茄叶片早疫病的方法。利用高光谱图像采集系统获取380~1 030 nm范围内71个染病和88个健康番茄叶片的高光谱图像,同时采用主成分分析法(PCA)对高光谱图像进行处理。选取染病和健康叶片感兴趣区域(region of interest, ROI)的光谱反射率值,同时分别从前8个主成分的每幅主成分图像的ROI中提取对比度(Contrast)、 相关性(Correlation)、 熵(Entropy)和同质性(Homogeneity)4个灰度共生矩阵的纹理特征值,再通过PCA和连续投影算法(SPA)结合最小二乘支持向量机(LS-SVM)构建番茄叶片早疫病的早期鉴别模型。建立的6个模型中,采用光谱反射率值的LS-SVM模型对番茄叶片早疫病的识别率最高,达到100%。结果表明,应用高光谱成像技术检测番茄叶片早疫病是可行的。  相似文献   

4.
稻瘟病是世界公认的水稻重大病害之一。实现稻瘟病害的早期分级检测,对水稻病害早期防治及精准用药具有重要意义。以大田自然发病水稻为研究对象,采集稻瘟病发病早期染病叶片和健康叶片,获取所有叶片样本在400~1 000 nm波段内的高光谱图像并提取光谱数据。水稻在染病之初不会立刻出现病斑,无法识别采集到的无斑叶片是否染病。为实现对自然染病叶片早期无病斑状态的识别,提出取染病叶片贴近病斑的非病斑区域高光谱数据作为染病等级中的1级样本进行检测分析。按照病斑面积将样本划分为4个等级:健康叶片为0级(109片)、染病无病斑为1级(116片)、病斑面积小于10%为2级(107片)、病斑面积小于25%为3级(101片)。运用主成分分析(PCA)和竞争性自适应重加权(CARS)算法进行特征变量选取,CARS提取的特征波段较多,利用PCA算法对其进一步降维。分别以全谱数据、PCA提取的4个、8个、CARS选择的21个、CARS-PCA提取的6个特征变量为输入,建立水稻稻瘟病早期高光谱支持向量机(SVM)、PCA4-SVM、PCA8-SVM、CARS-SVM和CARS-PCA-SVM检测模型。结果显示,所有模型对各级样本的检测准确率均较高,其中,对1级样本的检测准确率与其他级别相当,识别效果较好;所有模型的样本总体准确率均大于94.6%,CARS-SVM模型的总体准确率最高为97.29%,CARS-PCA-SVM模型为96.61%略低于CARS-SVM模型,但其输入变量仅为6个,较CARS-SVM的21个减少71.43%,模型更为简洁、更利于提高检测速度。因此,综合评价CARS-PCA-SVM模型最优,各级准确率分别为97.30%,94.87%,94.29%和100.00%。结果表明,所建模型检测准确度较高,可以实现对大田自然发病的稻瘟病早期分级检测,为稻瘟病染病之初无病斑叶片的检测提供新思路,为水稻稻瘟病早期防治、精准施药及检测仪器开发提供理论依据。  相似文献   

5.
为了给苍术颗粒剂基于高光谱成像的可视化区分提供理论指导,选用竞争性自适应重加权采样法(CARS)和相关性分析(CA)进行两次特征波长选择,提出了利用近红外高光谱成像技术对苍术颗粒剂产品溯源的新方法。874~1 734 nm波段范围内采集150个来自三个生产厂家的苍术颗粒剂高光谱图像,提取感兴趣区域(ROI)的光谱反射率值作为鉴别模型的输入变量,采用邻近算法(KNN)、误差反向传输神经网络(BPNN)、偏最小二乘法判别分析(PLS-DA)、最小二乘支持向量机(LS-SVM)建立四种算法(分类器)的判别模型。通过对模型效果的评价标准(预测集总体判别率以及kappa系数)来判别三个不同厂家苍术颗粒剂的区分效果。除KNN模型外,预测集的判别率都是100%, kappa系数均为1。为了加快运算速度,研究通过CARS、随机蛙跳算法(RF)、连续投影算法(SPA)和序列前向选择(SFS)算法初步选择特征波长;采用CARS, RF, SFS和SPA结合CA算法取得了4组最优波长。分别得到4个(975, 1 220, 1 419, 1 476 nm)、 2个(1 005, 1 442 nm)、 4个(924, 1 005, 1 419, 1 584 nm)和3个(948, 1 146, 1 412 nm)最优波长,并分别建立了KNN, BPNN, PLS-DA和LS-SVM判别模型。在筛选三种最优算法的情况下,能够以较少的特征波长个数获得的最好建模效果为:CARS-CA-LS-SVM模型中预测集总体判别率是100%, kappa系数为1。将CARS-CA筛选出波长变量的每个像素点光谱数据输入到LS-SVM模型中,将判别结果用不同颜色直观显示。该研究为快速无损进行苍术颗粒剂产品溯源提供了思路,为今后开发相关机构的快速监管提供了技术支持。  相似文献   

6.
番茄叶片在感染病害后首先发生的是内在生理反应,肉眼无法观察到。叶片从被感染到出现肉眼可见病斑期间,称为叶片病害潜育期。为了实现番茄叶片表面未见明显病斑的灰霉病潜育期诊断,对接种样本进行叶片编码、跟踪、采集所有编码叶片样本1~8 d连续高光谱图像数据,建立番茄叶片样本时序高光谱数据集。采用跟踪的叶片样本出现肉眼可见病斑前几天同一位置区域的高光谱数据作为潜育期感兴趣区域进行检测分析。为了建立番茄叶片灰霉病潜育期诊断和不同病斑等级分类模型,采用基于教学优化算法(TLBO)优化极限学习机(ELM)的分类模型进行建模。通过TLBO算法优化ELM的输入权值和隐藏层的偏差,提高模型分类性能。利用高光谱成像系统在近红外高光谱波段388~1 006 nm波段获取五个等级的感兴趣区域进行数据建模,共采样213个高光谱数据,其中,健康类(56个)、潜育期类(42个)、小病斑类(43个)、大病斑类(39个)和严重类(33个)。通过对比不同的光谱预处理方法,采用效果最好的小波滤波变换(DWT)对样本数据中每类数据分别滤波。DWT滤波后,在610~840 nm波段间五个等级光谱曲线能区分明显,共包含91个波长,波长数量较多。因此,采用竞争性自适应重加权抽样法(CARS)对采用DWT预处理后的光谱数据在610~840 nm波段重复3次优选特征波长,合并去除重复项后得到9个特征波段:694,696,765,767,769,772,778,838和840 nm。最后分别选取全波段FC、610~840 nm波段、CARS提取的9个特征波段建立3个分类模型FC-TLBO-ELM,DWT-TLBO-ELM,DWT-CARS-TLBO-ELM进行对比,其中DWT-CARS-TLBO-ELM检测精确度最高达100%,潜育期召回率100%,利用时间最短为0.068 9 s,表明该模型可以实现番茄灰霉病潜育期高精度诊断和灰霉病病害程度高精度分类,为番茄灰霉病早期防治、精准施药提供理论依据。  相似文献   

7.
山茶油素有"东方橄榄油"美誉,实现掺假山茶油的鉴别具有重要实用价值,采用近红外光谱技术对掺有葵花油的山茶油进行检测。分别以1%,5%,10%为梯度制备掺假比例不同的山茶油样品,并根据掺假比例将其分为A组(0%~5%)和B组(6%~10%)共11个样品,C组(15%~40%)6个和D组(50%~100%)6个样品。将每个掺假样品充分混匀后再分为9份,依次采集其1 000~2 500nm范围的吸收光谱,共获得207条光谱曲线。每组样品的光谱数据按2∶1随机分为训练集与验证集。经去除首尾噪声后,通过主成分分析法(principal component analysis,PCA)降维,并利用前四个主成分建立了鉴别山茶油不同掺假等级的主成分-支持向量机判别模型,训练集与验证集的总体判别准确率分别达96.38%和94.20%;进一步,通过对前四个主成分的载荷系数的分析,并结合原始光谱,提取建模过程中权重较大的波长并解析其化学含义,最终确定出五个特征波长:1 212,1 705,1 826,1 905及2 148nm,以此波长重新建立近红外特征光谱山茶油掺假等级判别模型,对训练集与验证集的总体判别准确率也达到了94.20%和92.75%。研究结果表明,利用近红外光谱和特征光谱均能够较好实现山茶油掺假等级的鉴别,同时所建立的近红外特征光谱模型也为设计相应的掺假山茶油实用便携式检测仪器提供了理论基础。  相似文献   

8.
提出了利用可见/近红外高光谱成像技术检测高温障碍胁迫下番茄叶片色差的方法。首先采集380~1 023 nm波段范围内60个高温障碍胁迫和60个健康番茄叶片的高光谱图像,同时获取全部叶片的色差值(L*, a*b*),然后提取所有样本的高光谱图像中感兴趣区域(region of interest, ROI)的光谱反射率值。基于不同预处理方法建立偏最小二乘(partial least squares, PLS)预测模型,再利用连续投影算法(successive projections algorithm, SPA)提取特征波长并建立SPA-PLS预测模型。最后分别基于全波段和特征波段建立偏最小二乘-判别分析(partial least squares-discriminant analysis, PLS-DA)模型。结果显示,全波段中基于原始光谱信息建立的模型效果最好,3个色差值的预测集决定系数(determination coefficient, R2)分别是0.818,0.109和0.896;基于特征波长建立的模型预测集R2分别是0.591,0.244和0.673;所有模型预测集的总体识别率均大于77.50%。结果表明,可见/近红外高光谱成像技术检测番茄叶片色差值(L*和b*)和识别高温障碍样本是可行的。  相似文献   

9.
生菜叶片绿度在作物生理及品质感官评价中具有重要作用。结合目前高光谱检测与分析技术在植物生理信息监测中的应用现状,开展了基于高光谱技术的生菜叶片绿度判别方法研究,以此为叶菜品质感官评价的定量化及基于高光谱技术的多功能生理信息同步采集装置的开发提供必要的理论支撑。本文以生菜为研究对象,在三种不同光照强度下开展栽培试验。以叶绿素相对含量(SPAD)作为反应绿度的参数,获取生菜整个生命周期中的动态高光谱和SPAD数据,分析了高光谱曲线的变化规律,建立了高光谱与SPAD之间的关系模型。采用Savitzky-Golay卷积平滑(SG)方法对原始高光谱数据进行降噪,平滑后的数据分别与多元散射校正(MSC),标准正态变量变换(SNV)和一阶导数(FD)三种预处理方法组合,采用竞争性自适应重加权取样法(CARS)和提取有效植被指数(VI)两种方法进行敏感波长提取,结合偏最小二乘(PLS)和最小二乘支持向量机(LSSVM)两种方法建模,以决定系数(R2)和均方根误差(RMSE)为评价指标,优选出最优绿度判定模型。结果表明:在10,20和30 d的生菜全生命周期内,不同光照强度下的高光谱曲线表现出总体变化趋势一致但反射率值不同的特征,在可见光450~680nm范围内,自然光照条件下的生菜高光谱反射率值要高于补光处理条件下的反射率值;而在近红外730~850 nm范围内,生菜叶片的高光谱响应特征恰好与可见光范围内相反。基于SG+FD预处理与CARS敏感波长提取方法的组合可实现叶绿素相对含量特征信息的最有效提取,提取的敏感波长占全波长的64.59%,与原始高光谱(1.25%)相比,提取的敏感波长数增加了63.34%。最终确定LSSVM方法为最优建模方法,基于SG+FD+CARS+LSSVM组合方法所建模型为最优生菜绿度判定模型,训练集R2c=0.920 7,RMSEC=1.161 0,预测集R2p=0.828 8,RMSEP=2.400 8,模型精度较高,可以实现生菜叶片绿度判别的目的。  相似文献   

10.
对灰霉病胁迫下番茄叶片中叶绿素含量(SPAD)的高光谱图像信息进行了研究。首先获取380~1 030 nm波段范围内健康和染病番茄叶片的高光谱图像,然后基于ENVI软件处理平台提取高光谱图像中感兴趣区域的光谱信息,经平滑(Smoothing)、标准化(Normalize)等预处理后,建立了基于Normalize预处理的偏最小二乘回归(PLSR)和主成分回归(PCR)模型。再基于PLSR获得的4个变量建立反向传播神经网络(BPNN)和最小二乘-支持向量机(LS-SVM)模型。4个模型中,LS-SVM的预测效果最好,其决定系数R2为0.901 8,预测集均方根误差RMSEP为2.599 2。结果表明,基于健康和染病番茄叶片的高光谱图像响应特性检测叶绿素含量(SPAD)是可行的。  相似文献   

11.
影响柑橘生长的病虫药害种类繁多,目前的检测方法大多针对单一病症,开发基于高光谱成像和机器学习的多种类柑橘病虫药害叶片快速精准检测方法,对果园精准施药和柑橘产业健康发展具有重要意义。以果园自然发病的柑橘叶片为研究对象,包括柑橘正常叶(50片)、溃疡病叶(50片)、煤烟病叶(103片)、缺素病叶(60片)、红蜘蛛叶(56片)和除草剂危害叶(85片),采集350~1 050 nm波段内的高光谱数据。分别利用一阶求导(1stDer)、多元散射校正(MSC)和中值滤波(MF)方法对原始(Origin)高光谱数据进行预处理,对预处理后的高光谱数据采用主成分分析(PCA)和竞争性自适应重加权(CARS)算法提取特征波长,CARS降维得到的特征波长分别为10个、5个、12个和10个,4组PCA提取的特征波长均为7个,两种方法所得特征波长范围都集中在700~760 nm波段内。对全波段(FS)使用极限梯度提升树(XGBoost)算法,特征波长使用支持向量机(SVM)建立柑橘病叶多分类模型。采用XGBoost建立的检测识别模型有Origin-FS-XGBoost,1stDer-FS-XGBoost,MSC-FS-XGBoost和MF-FS-XGBoost,对6种病虫害叶片检测得到的整体分类准确率(OA)分别为94.32%,93.60%,95.98%和96.56%;SVM建立的检测识别模型为Origin-CARS-SVM,1stDer-CARS-SVM,MSC-CARS-SVM,MF-CARS-SVM,Origin-PCA-SVM,1stDer-PCA-SVM,MSC-PCA-SVM和MF-PCA-SVM,各模型OA依次为93.63%,90.26%,87.90%,91.95%,87.53%,90.82%,83.50%和90.98%。结果表明,以FS为输入的XGBoost模型识别率整体优于以特征波长为输入的SVM模型,MF-FS-XGBoost模型OA为96.56%,召回率(Recall)为95.91%,模型训练时间(Train-time)为63 s,综合性能最好;CARS-SVM建模效果优于PCA-SVM,在3种预处理方式下,CARS-SVM模型识别率均高于87%,PCA-SVM模型识别率均在83%以上。结果证实了,高光谱成像技术结合机器学习方法可实现多种类柑橘病虫药害分类识别,为柑橘病虫药害快速无损检测和防治提供科学依据。  相似文献   

12.
基于高光谱成像技术的番茄茎秆灰霉病早期诊断研究   总被引:3,自引:0,他引:3  
共采集了112个番茄茎秆高光谱数据(光谱范围400~1 030 nm),结合图像处理和化学计量学方法建立了番茄茎秆灰霉病早期诊断模型。应用偏最小二乘法(PLS)模型的隐含变量载荷分布选取了七个特征波长(EW),并建立了番茄茎秆灰霉病早期诊断的最小二乘支持向量机(LS-SVM)模型。结果表明,经过变量标准化(SNV)及多元散射校正(MSC)预处理所建立的EW-LS-SVM模型获得了满意的判别效果,且优于全波段的PLS模型。说明高光谱成像技术进行番茄茎秆灰霉病的早期诊断是可行的,为番茄病害早期诊断和预警提供了新的方法。  相似文献   

13.
基于高光谱成像技术的番茄叶片灰霉病早期检测研究   总被引:1,自引:0,他引:1  
提出了独立软模式法(SIMCA)的番茄叶片灰霉病特征波段图像的提取,并通过多元线性回归法(MLR)提取波段融合图像,通过最小距离法获取番茄灰霉病患病信息的技术路线。利用680~740 nm波段的方差图像和建模能力参数提取的特征波段,并作为输入变量进行MLR分析,在0.5准确率阈值下,准确率均大于99%,说明特征波段可以实现番茄叶片灰霉病的检测,并利用MLR回归系数提取波段融合图像,通过最小距离法获取番茄灰霉病患病信息,结果表明所提出的方法具有很好的预测能力,为番茄灰霉病的早期检测提供了一种新方法,且大大降低了高光谱图像的数据处理时间。  相似文献   

14.
基于高光谱的番茄叶片过氧化物酶活力测定   总被引:4,自引:0,他引:4  
用高光谱图像技术结合化学计量学方法,实现了番茄叶片中过氧化物酶(POD)活性的快速检测。利用高光谱图像的光谱特征建立预测模型步骤为:采集高光谱图像数据、获取光谱曲线、光谱数据预处理、提取特征波段、建立POD酶活性预测模型。与预处理方法(SG,SNV,MSC,1-Der和2-Der)相比,DOSC预处理对POD酶活性预测效果最好。研究表明:以443,464,413,410,401,402,426和926 nm这八个特征波段的光谱数据建立的DOSC-SPA-PLS模型对POD酶活性预测结果为Rp=0.935 3,RMSEP=37.80 U·g-1。这说明高光谱图像技术测定番茄叶片POD活性具有可行性,且预测结果令人满意,这为抗氧化酶活性和番茄植株生长状况的动态检测提供了新的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号