首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
随着科技的发展,工业领域对白铜产品质量的要求日益提升;利用辐射测温技术对白铜在冶炼和加工时的温度进行精确测量,是决定产品质量的重要手段,因此研究白铜的光谱发射率特性就显得尤为重要。基于傅里叶红外光谱仪搭建的光谱发射率测量装置,测量了白铜在四个温度点(673,773,873和973 K),波长范围2~22 μm内的光谱发射率,分别研究了波长、温度、加热时间和氧化对白铜光谱发射率的影响。研究发现,在氮气环境下白铜的光谱发射率随温度的升高而增加,随波长的增加而减少。当白铜暴露在空气环境中,随着温度的升高,其光谱发射率迅速增加。673 K时,白铜表面生成一层细微的氧化物颗粒,阻止白铜进一步氧化,这些氧化物颗粒的光谱发射率大于白铜基底,所以此温度下短波处的光谱发射率略微增加。773 K时,白铜表面氧化物的主要成分是Cu2O,在实验过程中也观察到白铜表面逐渐变红的现象,这也是白铜在773 K温度下其光谱发射率迅速增加的原因。873 K时,白铜表面氧化物的种类和含量明显增多,氧化膜的厚度满足干涉效应条件,在白铜的光谱发射率曲线中可以明显地观察到干涉极值的演变,随着加热时间的增加,干涉极值逐渐向长波移动。随着温度的升高,白铜的抗氧化能力下降。973 K时,白铜表面的氧化程度最深,在XRD图中氧化物的峰值也最大,因此氧化1 h后由于干涉效应产生的干涉极值数最多。综上所述,波长、温度和氧化对白铜的光谱发射率有重要的影响,在运用辐射测温技术测量白铜温度时应充分考虑上述因素的影响。该研究丰富了白铜的光谱发射率数据,为辐射测温提供了真实可靠的数据支撑。  相似文献   

2.
针对大型热态锻件在锻造过程中表面有较厚的氧化皮包裹,导致测温数据存在较大的误差,提出了一种基于红外光谱的测温方法,能有效的消除氧化皮层对测温的影响。该方法通过接收锻件氧化皮表面辐射的红外光谱直接测量氧化皮表面的温度和发射率,然后利用热交换公式推导求出被氧化皮覆盖的热态锻件真实温度。为了更好的抑制接收的红外光谱中各种干扰光谱的透过,提出了三级干涉滤光系统,并利用光谱仿真获得一组最优间隙参数值,提高了测温精度。实验结果表明,该测温方法能够准确测出覆盖有氧化皮高温锻件表面的温度,满足测温精度要求,验证了该测温方法的可行性。  相似文献   

3.
热辐射体真实温度的测试研究   总被引:2,自引:0,他引:2  
在辐射测温中,普遍存在一个问题,被测温度物体表面发射率影响很大,而物体的发射率很难确测量,这是因为发射率不仅与材料有关,而且还与波长,温度,表面状态(表面粗糙度,氧化程度等)有关,本文叙述一种利用多波长辐射法测量实际物体真实温度的方法,该方法利用最小二乘法原理拟合出实际热辐射体的光谱发射率曲线,从而使测量目标的真实温度成为可能。  相似文献   

4.
光谱发射率是一个重要的热物性参数,在辐射测温、热传输计算等领域有着广泛的应用。钨作为一种重要的金属,关于其光谱发射率的研究报道较少。利用黑体炉、傅里叶红外光谱仪、加热装置和光学系统搭建了一套能量对比法光谱发射率测量装置,该装置能够测量3~20μm的光谱发射率,测量装置的整体不确定度优于5%。利用该装置测量了纯钨在4个温度点(573, 673, 773和873 K)的法向光谱发射率,重点探讨了氧化、温度、波长和加热时间对纯钨光谱发射率的影响。研究结果表明:纯钨在表面未氧化的情况下,光谱发射率在几个温度点的变化规律基本一致,且数值相差较小,而当其表面发生氧化后光谱发射率迅速增加,在某些波长处出现了强烈的振荡。表面未氧化时纯钨的光谱发射率受温度的影响较小,随着温度的增加仅出现微小的增加,但是当表面发生氧化后,随温度的升高而迅速增大。纯钨的光谱发射率整体上随着波长的增加而减小,但是当表面发生氧化后,由于表面氧化膜与钨金属基底发生干涉效应,在4, 9, 12.5和16.5μm处均出现了峰值。在573和673 K,纯钨的光谱发射率随着加热时间的增加无明显变化。然而,随着温度的升高,在773和873 K时,光谱发射率随着加热时间增加而增大,在773 K时光谱发射率随加热时间的增加增幅较大,因为在该温度点,纯钨表面刚开始发生氧化,氧化速率较大,在873 K时光谱发射率随加热时间的增加增幅较为平缓,并且随着加热时间的增长呈现稳定的趋势。综上,纯钨的光谱发射率在温度较低和表面未氧化时较为稳定。随着温度的升高,当表面发生氧化后,光谱发射率迅速增大,并且在多个波长位置出现了强烈的振荡。由此可见,纯钨光谱发射率受温度、波长、加热时间的影响较大,在实际应用过程中,特别是在辐射测温过程中,如果把纯钨的光谱发射率看做常数将会带来较大的测量误差。该研究将进一步丰富钨的光谱发射率数据,并为其在科学研究和应用中提供数据支持。  相似文献   

5.
光谱发射率是表征材料热物理性能的重要参数。对于非导电材料的高温光谱发射率测试,一般采用高温加热炉加热或辐射加热的方式来进行发射率测试,存在的问题是采用高温石墨炉加热时,样品可能会与高温石墨发生化学反应,从而破坏材料原有物性;采用辐射加热,一般是单向静止加热,会存在样品温场梯度非均匀分布的问题。基于激光旋转加热和样品/黑体整体一体化设计,提出了一种“样品动中测”的非导电材料高温光谱发射率测试新方法,建立了相应的测量模型,突破了传统的 “样品静中测”的局限,样品与参考黑体共形一体化设计,采用微区域光谱辐射成像方法,同时测量参考黑体和样品的光谱辐射能量与温度。建立了激光旋转加热状态下的热传导方程,对典型样品材料的温度分布进行了仿真计算,结果表明旋转样品温场分布较为均匀,分析了温场分布与红外光谱发射率测量误差间的关系,给出了适用于本测试方法的材料的热导率下限值。基于该方法,搭建了相应的测量装置,对典型材料碳化硅在1 000 K时的光谱发射率进行了测试,在4 μm处对各个典型高温温度点的光谱发射率进行了测试,得到了碳化硅材料在红外波段的光谱发射率波长变化和温度变化规律特性。与国外的测量结果进行了比对,结果较为一致,验证了激光旋转加热光谱发射率测试方法的可行性。采用此方法,不破坏样品本身的理化特性,样品加热升温速度快,测量温度范围上限高,有效减小了激光静止单向加热带来的温度不均匀性,可同时测量出样品和参考黑体的光谱辐射亮度及温度,无需另外再设计标准高温黑体,解决了现有非导电材料高温光谱发射率测试中非均匀加热和辐射能量同步比对测量的问题,可应用于多种非导电材料高温光谱发射率的测试。  相似文献   

6.
基于基尔霍夫定律,利用砷化镓(GaAs)半导体激光器作为标准光源研制了一种能够准确实时测量不透明物体光谱发射率的反射式测量装置。利用该装置在300~1 123K之间对黄铜和紫铜两种样品在波长1.55μm处的光谱发射率进行了系统的研究,探讨了温度、氧化、加热时间等因素对两种铜样品光谱发射率的影响。实验结果表明:黄铜和紫铜的光谱发射率均随温度的升高而增大,并且紫铜的光谱发射率始终大于黄铜的光谱发射率,两种样品随温度的光谱发射率曲线均出现了峰值和谷值。通过分析有氧化膜时金属表面的反射模型,得到了金属表面氧化膜厚度的计算公式,并利用该公式估算了紫铜发射率出现峰值和谷值时氧化膜的厚度。恒温长时间测量结果表明:光谱发射率随加热时间出现小幅增大,2h后,由于样品表面氧化达到一定程度,氧化速率开始变缓,样品表面的光谱发射率也随之开始趋于稳定。样品在较高温度处的光谱发射率数值始终大于较低温度处的发射率数值。该研究进一步丰富了铜的光谱发射率数据,并为其光谱发射率的应用提供了实验依据。  相似文献   

7.
中国遥感卫星辐射校正场陆表热红外发射率光谱野外测量   总被引:4,自引:0,他引:4  
中国遥感卫星辐射校正场陆表发射率光谱是利用陆表场地进行遥感器红外通道绝对辐射定标的关键因子之一。基于光谱平滑的温度与发射率分离反演迭代算法,利用高精度的BOMEM MR154傅里叶变换红外光谱仪和红外标准板,对敦煌戈壁陆表发射率光谱进行测量。获得了不同时间和地点测量的陆表发射率光谱数据,并与利用CE312通道式红外辐射计在相同区域的测量结果进行比较分析。结果表明各个通道发射率的差别均在0.012以内,具有较好的一致性。利用该发射率光谱测量结果,可以在敦煌戈壁——中国遥感卫星辐射校正陆面场,对目前国内外主流的遥感卫星热红外通道进行在轨场地绝对辐射定标。  相似文献   

8.
基于相关性的中红外温度与发射率分离算法   总被引:1,自引:0,他引:1  
温度和发射率是耦合在一起的.在精确获得大气参数的情况下,由传感器的辐射测量反演地表的温度与发射率,仍然是一个病态问题,必须采取一定的策略进行温度与发射率的分离.因此,温度与发射率的分离是红外遥感的核心问题.文章在分析无太阳直射光影响时大气下行辐射和含有大气残留的地表发射率之间关系的基础上,提出了一个针对野外测量中红外高光谱数据的温度与发射率分离算法.该算法利用大气下行辐射和含有大气残留的地表发射率之间的相关性作为判据来优化地表温度,进而获得地表发射率.基于模拟的中红外高光谱数据,对算法的精度进行评价.结果表明,该算法能够获得较高的地表温度和发射率反演精度;具有较广的适用范围,对测量过程中大气下行辐射变化不敏感;同时算法具有一定的抗噪性.  相似文献   

9.
一种红外光谱发射率测量装置的研制   总被引:1,自引:1,他引:0  
研制了一种利用对称双光路比对法测量材料表面光谱发射率的装置,该装置采用多光谱辐射测温技术测量材料表面温度,解决了不规则材料表面温度难以精确测定的问题,实现了材料表面半球发射率和表面温度的同时测定。  相似文献   

10.
固体材料定向光谱发射率测量装置研究及误差分析   总被引:1,自引:0,他引:1  
针对红外隐身材料光谱发射率测评的需要,提出一种基于能量法的发射率测量模型,并建立起固体材料定向光谱发射率测量装置,能实现温度范围50℃~300℃与光谱范围1.3μm~14.5μm的固体材料定向光谱发射率测量。通过对试样进行实测,得到不同样品在150℃和同一样品在不同温度下的光谱发射率曲线,得出该材料发射率随温度变化的结论。最后分析了样品同黑体温度不等引起的误差,给出温差为1℃和2℃时,发射率相对误差随温度与波长的分布曲线,以及不同黑体温度下3μm~5μm和8μm~14μm的平均相对误差值。  相似文献   

11.
为了准确评估红外材料和涂层的隐身性能,研制了一套IRS400型材料发射率测试装置,主要用于温度范围(50~400)℃,光谱范围(3~5)m和(8~12)m的固体不透明材料和涂层定向发射率测量。给出IRS400型材料发射率测试装置的技术指标,阐述其工作原理,IRS400的光学系统采用全反射式设计,探测器选用钽酸锂热释电探测器,采用50 ℃~1 000 ℃黑体辐射源标准装置对黑体发射率B(1,2)进行标定。通过解决标定和环境温度补偿等关键技术,确保发射率测量不确定度小于2%(k=2)。  相似文献   

12.
光谱发射率标准参考材料作为光谱发射率量值传递的载体,主要用于校准各种光谱发射率测量装置,提高光谱发射率测量装置的准确度。介绍了美国国家标准与技术研究院最早提出的标准参考材料及其光谱发射率数据,并详细分析了欧洲一些计量部门提出的潜在的标准参考材料的光谱发射率数据。针对近年来一些研究者提出的标准参考材料Armco铁和碳化硅(SiC),探讨了其作为光谱发射率标准的优点与不足。最后总结了光谱发射率标准参考材料所应具备的特征,并展望了光谱发射率测量标准未来的发展。  相似文献   

13.
近年来,随着国防、工业、科技等领域飞速发展,无论是对于军用动力发射系统还是对于民用钢铁冶炼以及高科技新兴产业,辐射温度测量都具有重要意义。尤其在温度极高且伴随着瞬态测温(小于1 μs)需求的场合,多光谱辐射测温法被广泛运用。多光谱辐射测温法是通过选取被测目标多个特征波长,测量特征波长的辐射信息,再假设发射率与波长相关的数学模型,最终求解得到辐射温度。目前,利用该方法实际测温时,光谱发射率都采用固定的假设数学模型,而针对目标在不同温度状态下,该固定模型则无法进行自适应变化。同样,在不同温度下,如何解算最终的发射率和辐射温度也没有普适性的方法。基于普朗克黑体辐射定律,提出一种被测目标在不同温度下光谱发射率函数基形式不变的思想,简称发射率函数基形式不变法。通过该方法,发射率模型可以根据物体在不同温度状态下,函数系数动态改变来进行自适应变化。同时对于如何解算最终的发射率和辐射温度也相应提出了普适性的方法。通过大量仿真验证以及实际测量光谱辐射照度标准灯和溴钨灯温度实验,证明本文提出的方法比现有的光谱发射率处理方法更加简单实用并且能够有效地提高光谱发射率的计算精度,从而提高辐射温度测量精度。同时具有实用性好、应用广泛等特点。  相似文献   

14.
Continuous furnaces are commonly used for steel billet reheating before a rolling operation. It is necessary to perform a number of measurements to set-up and operate the optimization system of the furnaces correctly. A charge temperature measurement using infrared detectors can be one of the usable measurement techniques. This non-contact measurement method is based on the detection of infrared radiation emitted from a measured surface. The radiation intensity depends on the surface temperature and emissivity, which is one of the most important parameters for infrared measurements. Advantages of the non-contact temperature measurement, as well as some problems regarding the surface emissivity, are presented. The direct steel billet temperature measurement procedure using infra-red detectors, emissivity determination procedures, and example results are introduced. It is shown that steel emissivity can vary from approx. 0.17 to 0.8, depending on the surface state, scale formation, and wavelength interval. These problems are critical for the charge temperature measurement using the infra-red detectors, and are discussed in this paper.  相似文献   

15.
This study explores the spectral emissivity modeling of steel 201 during the growth of oxidation film over the temperature range from 800 to 1100 K at 1.5 μm. The radiance coming from the specimen is received by an InGaAs photodiode detector. The specimen temperature is obtained by averaging the two platinum–rhodium thermocouples, which are tightly welded in the front surface of specimen near the measuring area viewed by the detector. The variation of spectral emissivity with the temperature is studied at a given heating time. The variation of spectral emissivity with the heating time is evaluated at a definite temperature. The strong oscillations of spectral emissivity are observed and discussed in detail, which originate from the interference effect between the radiation stemming from the oxidization film on the specimen surface and the radiation coming from the specimen surface. The measurement uncertainties of spectral emissivity contributed only by the surface oxidization are about 3.2–14.1%. At a given heating time, the variation of spectral emissivity with the temperature abides well by a simple analytic functional form. And at a definite temperature, the variation of spectral emissivity with the heating time can also be well reproduced by fitting except for the periodical oscillations.  相似文献   

16.
This paper presents, in the context of materials dynamic behaviour study, a method for simultaneous measurement of the temperature and emissivity of a solid’s surface, by the use of infrared radiation. In contrast to existing methods, this method has no need for a pre-measurement of the surface emissivity. The emissivity and the temperature are measured simultaneously, by detecting the variations of emitted radiation and infrared radiation reflecting on the surface, at two different spectral zones. In this way, the accuracy of the measured temperature is greatly improved in cases were the surface optical properties vary during the measurement. Several experiments were carried out in order to complete the theoretical foundation of the method and to outline its accuracy and some of its limitations. There are various industrial applications of this method, for example the control of the temperature of the mechanical parts during work machining. One of them may be the measurement of the temperature of a sample during mechanical testing. An application of the method is proposed, that is easy to employ with non-sophisticated infrared and optical components. The results confirm the accuracy of the proposed method with an order of 3% of precision for temperature determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号