首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计并制备了一种太赫兹波段的类电磁诱导透明(EIT)超材料谐振器,用于链霉亲和素-琼脂糖的特异性传感。利用有限差分法设计两个正方形开口谐振环嵌套构成的超材料谐振器实现类EIT高Q谐振,并对其传感特性进行了仿真分析。将生物素和十八硫醇固化在制备的超材料表面形成特异性膜对不同浓度链霉亲和素-琼脂糖进行传感实验,利用基于返波振荡器(BWO)的高分辨太赫兹谱进行了谐振特性测量。结果表明设计的类EIT超材料传感器Q值为34,灵敏度为24.7 GHz/RIU,链霉亲和素-琼脂糖单位质量浓度变化引起的频移量为0.65 GHz,为太赫兹器件应用于生物化学领域的无标记微量检测提供一定的参考。  相似文献   

2.
提出了以聚酰亚胺(PI)为感湿材料的三耦合点单微环新型湿度传感器。外界湿度变化使得聚酰亚胺SOI微环谐振特性发生变化,最终通过谐振波长的漂移量确定湿度值。讨论了不同部位感湿时系统的传感特性,并且选择了最佳湿敏元件。数值模拟结果表明:与传统的单微环传感器相比,新型传感器具有较高灵敏度和测量范围,Through端口的自由频谱范围可提高3倍。三耦合点单微环谐振器整体结构可作为最佳湿敏元件,该传感器在10%RH~80%RH相对湿度范围内,灵敏度可达到0.98 nm/%RH,该结构为制备高灵敏度可集成微型湿度传感器件提供了一定的理论依据。  相似文献   

3.
高性能石墨烯霍尔传感器   总被引:1,自引:0,他引:1       下载免费PDF全文
黄乐  张志勇  彭练矛 《物理学报》2017,66(21):218501-218501
本文回顾了石墨烯霍尔传感器的相关研究工作.通过改善石墨烯生长转移和霍尔元件的微加工工艺,石墨烯霍尔元件和霍尔集成电路都展示出超越传统霍尔传感器的优异性能.石墨烯霍尔元件的灵敏度、分辨率、线性度和温度稳定性等重要指标都优于传统商用霍尔元件.通过开发一套钝化工艺,霍尔元件的稳定性有了明显提升.结合石墨烯材料的特点,展示了石墨烯在柔性磁传感和多功能传感领域的新颖应用.此外,成功实现了石墨烯/硅互补型金属-氧化物-半导体(CMOS)混合霍尔集成电路,并进行了应用展示.通过发展一套低温加工工艺(不超过180℃),将石墨烯霍尔元件制备在硅基CMOS芯片的钝化层上,从而与硅基CMOS电路实现了单片集成.本文的研究结果表明石墨烯在霍尔磁探测方向拥有重大的性能优势,在产业化应用中有巨大发展潜力.  相似文献   

4.
人工局域表面等离激元是一种基于表面等离激元超材料的电磁谐振模式,在微波、毫米波和太赫兹频段可实现深亚波长场束缚、高品质因子、高介电灵敏度等优异传感特性,并且与平面印刷电路工艺兼容,易于和信号检测电路、无线通信电路集成,因此在小型化便携式的物联传感领域展现出广阔的应用前景。本文重点介绍人工局域表面等离激元传感的新原理、相关技术及典型应用。在传感新原理方面,讨论了新型人工局域表面等离激元的谐振结构、电磁模式、以及涡旋波传感原理;在传感指标提升技术方面,探讨了模式间耦合和有源放大两种传感增强方法;在应用探索方面,回顾了人工局域表面等离激元在溶液浓度传感、细胞传感和力学量传感等方向的代表性工作,介绍了小型化人工局域表面等离激元传感系统的最新进展。最后,对人工局域表面等离激元传感的发展趋势进行了讨论和展望。  相似文献   

5.
本文利用方形谐振器与两个金属/介质/金属型波导结构耦合设计了一个亚波长的表面等离子体波导传感器,并通过有限元分析研究了此结构的传输特性。研究表明,通过谐振器耦合能有效增强共振波长的表面等离子体波的透射能力,同时减小两侧波导结构与方形谐振器之间的金属势垒层宽度可提高透射率。传感器的共振波长与介质材料的折射率之间存在着线性关系,1阶共振模的灵敏度可达1100nm/RIU。这种传感器可实现器件的小型化,在生物、工业传感领域有着很大的潜力。  相似文献   

6.
武佩  胡潇  张健  孙连峰 《物理学报》2017,66(21):218102-218102
石墨烯是一种由单层碳原子紧密排列而形成的具有蜂窝状结构的二维晶体材料,特殊的结构赋予了其优异的性能,如高载流子迁移率、电导率、热导率、力学强度以及量子反常霍尔效应.由于石墨烯优异的特性,迅速激起了人们对石墨烯研究以及应用的热情.石墨烯沉积或转移到硅片后,其器件构建与集成和传统硅基半导体工艺兼容.基于石墨烯的硅基器件与硅基器件的有机结合,可以大幅度提高半导体器件的综合性能.随着石墨烯制备工艺和转移技术的优化,硅基底石墨烯器件将呈现出潜在的、巨大的实际应用价值.随着器件尺寸的纳米化,器件的发热、能耗等问题成为硅基器件与集成发展面临的瓶颈问题,石墨烯的出现为解决这些问题提供了一种可能的解决方案.本文综述了石墨烯作为场效应晶体管研究的进展,为解决石墨烯带隙为零、影响器件开关比的问题,采用了量子限域法、化学掺杂法、外加电场调节法和引入应力法.在光电器件研究方面,石墨烯可以均匀吸收所有频率的光,其光电性能也受到了广泛的关注,如光电探测器、光电调制器、太阳能电池等.同时,石墨烯作为典型的二维材料,其优越的电学性能以及超高的比表面积,使其作为高灵敏度传感器的研究成为纳米科学研究的前沿和热点领域.  相似文献   

7.
基于二维材料的纳机电谐振器具有体积小、频率高、品质因数高等优势,在传感领域具有很大的应用潜力。其中,黑磷由于其波纹状的平面结构和各向异性的机械特性,为平面内矢量传感提供了可能。利用黑磷设计了一种光学激发光学读出的新型纳光机电磁矢量传感器。利用有限元分析法,探究了黑磷层数和长宽比对矢量性的影响,确定了黑磷谐振器的尺寸为0.6μm×0.134μm×0.5 nm;分别探索了高杨氏模量和低杨氏模量方向对磁场响应的各向异性。通过谐振模式的空间分布,解释了角度和长宽比对器件灵敏度和矢量性的影响机理。结果表明,将磁场旋转90°,灵敏度可从-4.048 MHz/mT变化为5.796 MHz/mT。与精度相近的洛伦兹力的微机电磁传感器相比,所设计传感器的频率可提高6个数量级,尺寸可缩小6个数量级。该设计为新型纳光机电矢量传感器的制备提供了一种方法。  相似文献   

8.
与微米机械振子相比, 纳米机械振子使用纳米级材料制备, 尺寸更小, 质量更轻, 它作为探测器, 在探测力、质量等物理量时拥有更高的灵敏度. 石墨烯有高强度、 低密度等优良的机械特性, 被认为是制备纳米机械振子的理想材料. 基于其制备的石墨烯纳米机械振子有着高谐振频率、高品质因子和谐振频率可调性高等优势, 对于纳米力学的基础研究和应用都具有重要的意义. 本文利用微纳加工工艺(包括电子束曝光、 电子束蒸发镀膜、 反应离子刻蚀和微米级定点干法转移技术)制备了串联石墨烯纳米机械振子样品, 并在极低温下(10 mK) 测量了石墨烯机械振子的机械性质, 实现两个串联石墨烯纳米机械振子的强耦合, 耦合强度为1.34 MHz, 协同系数C = 399.  相似文献   

9.
王越  冷雁冰  王丽  董连和  刘顺瑞  王君  孙艳军 《物理学报》2018,67(9):97801-097801
基于石墨烯的电控特性提出了一种由金属线谐振器和"H"型谐振器组成的宽带可调的类电磁诱导透明(类EIT)超材料结构.首先,利用CST Microwave Studio软件对该超材料结构的透射特性进行了仿真.该结构在1.05—1.46 THz内的透射窗由金属线谐振器的等离子谐振和"H"型谐振器的电感-电容谐振干涉相消引起,且暗模式谐振器的数量增多导致了透射窗带宽的增加.其次,仿真模拟了该结构在不同石墨烯费米能级下的透射特性.当石墨烯费米能级由0 eV逐渐增加到1.5 eV时,该结构透射窗在1.05—1.46 THz内的平均透射振幅由87%逐渐减少到25%,实现了宽带可调.同时,通过仿真模拟该结构在1.26 THz下的电场分布对其透射机理进行了分析,并实验制备了类EIT超材料结构样品,且利用太赫兹时域光谱对样品进行了透射性能测试,测试结果与仿真分析的趋势基本一致.  相似文献   

10.
微机械谐振式加速度计(MMRA)是通过检测加速度施加前后谐振器谐振频率变化实现对加速度检测的。该传感器具有频率信号输出、稳定性好、灵敏度高、精度高等优点,己成为MEMS传感器的重要发展方向之一。详细讨论了微机械谐振式加速度计设计中的关键技术,难点及对应解决方案、发展趋势。其中,关键技术包括机械结构、激励与检测方式以及谐振器刚度改变方式。分析了谐振器的三种机械结构以及微杠杆工艺误差造成的不对称性;根据谐振器材料的压电特性,可将MMRA分为压电MMRA和非压电MMRA,压电MMRA的激励与检测方式都是压电激励/压电检测,非压电MMRA主要为静电激励/电容检测;讨论了轴向应力和静电刚度这两种谐振器刚度改变方式的原理和适用范围。微机械谐振式加速度计主要存在四个技术难点:机械耦合、温度特性、工艺误差、组装与封装,并针对这四点给出了相应的解决方案。集成,静电刚度,新材料,多轴以及更高的性能指标将是今后微机械谐振式加速度计的主要发展趋势。  相似文献   

11.
还原氧化石墨烯由于独特的原子结构,作为气体检测领域有潜力的候选者引起了研究者们的广泛兴趣.本文采用水合肼作为还原剂来制备还原氧化石墨烯,并以此作为叉指电极的气体敏感层,研究了其对NO2气体的响应特性.结果表明,水合肼还原的氧化石墨烯可以实现在室温下对浓度为1—40 ppm (1 ppm=10–6)的NO2气体的检测,具有较好的响应性和重复性,恢复率可以达到71%以上,但是灵敏度只有0.00201 ppm–1,还有较大的提升空间.此外,对浓度5 ppm的NO2的响应和恢复时间分别是319 s和776 s.水合肼还原的氧化石墨烯气体传感器的传感机制可归因于NO2分子和传感材料之间的电荷转移.还原氧化石墨烯的突出电学特性促进了电子转移过程,这使得传感器在室温下表现出优异的气体传感性能.本实验研究可为石墨烯基传感器件的应用奠定一定的基础.  相似文献   

12.
硅烯具有独特的电子、光学、热学、力学以及量子特性,在电子器件、电极材料、储氢材料、催化剂和气体传感器等领域有巨大的潜在应用价值.本文采用基于密度泛函理论的第一性原理计算方法,利用Materials Studio软件中的CASTEP程序包对硅烯与CO分子之间的吸附行为进行了研究.重点研究了硅烯掺杂方式、CO分子吸附构型及硅烯空位缺陷浓度对CO分子吸附的影响,研究结果表明:1)空位缺陷硅烯对CO分子的吸附能力最强;2)碳原子垂直朝向空位缺陷硅烯更有利于CO分子的吸附;3)硅烯对CO分子的吸附能力随其空位浓度的增加显著增强;4)空位硅烯向CO分子转移电荷,电荷转移量与二者的吸附作用强弱呈正相关.该研究可为硅烯基CO气体传感器的设计提供理论指导.  相似文献   

13.
光学生物传感器在新药研制和生命科学等领域得到广泛关注,重点对基于回音壁谐振模的无标记光学生物传感器做了评述。根据谐振腔结构将传感器分为三类。基于微球的生物传感器由于微球腔的高品质因子而成为最初研究的重点,已实验研究了对蛋白质分子、病毒和细菌的传感响应,建立了基于单光子谐振能量和微扰理论的理论模型;基于微盘的生物传感器能够利用成熟的平面光刻微加工技术,传感构想提出更早,但直到回流热处理技术的应用才使得微盘品质因子大幅提高,从而实现了单分子测量;基于微环的生物传感器具有简单的谐振模式,有利于信号探测,已采用聚合物,氮化硅,以及硅基二氧化硅等材料制作成功,作为其在三维上的扩展,微管式传感器由于能够将光通道和流体通道合二为一而在近年得到关注。  相似文献   

14.
薄膜体声波谐振器(FBAR)力传感器作为一种新型的谐振式传感器,力敏特性是其设计原理。以FBAR微加速度计为例研究了工作在纵波模式,采用具有纤锌矿结构的AlN作为压电薄膜的FBAR,施加应力载荷后,其弹性常数改变导致FBAR谐振频率偏移的力敏特性。首先,采用有限元(FEA)静力学仿真,得到惯性力载荷作用下集成在硅微悬臂梁上的压电薄膜的应力分布;选取最大应力值作为载荷,基于第一性原理计算纤锌矿AlN的弹性系数与应力的关系式,预测惯性力载荷作用下AlN弹性系数的最大变化量。其次,采用谐响应分析,对比空载和不同惯性力载荷作用下FBAR微加速度计的谐振频率和偏移特性,预测FBAR微加速度计的加速度-谐振频率偏移特性。最后仿真分析得到:惯性力载荷作用下,FBAR微加速度计的谐振频率向高频偏移,灵敏度约为数kHz/g;其加速度增量-谐振频率偏移特性曲线具有良好的线性度。  相似文献   

15.
薄膜体声波谐振器(FBAR)力传感器作为一种新型的谐振式传感器,力敏特性是其设计原理。以FBAR微加速度计为例研究了工作在纵波模式,采用具有纤锌矿结构的AlN作为压电薄膜的FBAR,施加应力载荷后,其弹性常数改变导致FBAR谐振频率偏移的力敏特性。首先,采用有限元(FEA)静力学仿真,得到惯性力载荷作用下集成在硅微悬臂梁上的压电薄膜的应力分布;选取最大应力值作为载荷,基于第一性原理计算纤锌矿AlN的弹性系数与应力的关系式,预测惯性力载荷作用下AlN弹性系数的最大变化量。其次,采用谐响应分析,对比空载和不同惯性力载荷作用下FBAR微加速度计的谐振频率和偏移特性,预测FBAR微加速度计的加速度-谐振频率偏移特性。最后仿真分析得到:惯性力载荷作用下,FBAR微加速度计的谐振频率向高频偏移,灵敏度约为数kHz/g;其加速度增量-谐振频率偏移特性曲线具有良好的线性度。  相似文献   

16.
石墨烯因其优异的光学和电学性能,及其与硅基半导体工艺的兼容性,而备受学术界和工业界的广泛关注。作为一种独特的二维原子晶体材料,石墨烯有着优异的机械性能、超高的热导率和载流子迁移率、超宽带的光学响应谱及极强的非线性光学特性,使其在新型光学和光电器件领域具有得天独厚的优势。一系列基于石墨烯的新型光电器件先后被研制出,已显示出优异的性能和良好的应用前景。本文将介绍石墨烯光学性质、与光的相互作用以及提高方法,并给出其在光子和光电子器件领域的应用,分析了这些器件所使用的结构及特点,重点阐述了在全内反射结构下,石墨烯与光相互作用的增强及其偏振依赖性质,及其利用该偏振依赖性质在光学传感、光存储等方面的应用,以及在细胞传感方面的重要发现。最后对石墨烯光学性质及其应用的现状进行了总结和展望。  相似文献   

17.
镀膜硅微机械谐振器光热激励的实验研究   总被引:2,自引:0,他引:2  
对镀膜双层硅微机械谐振器的光热激励进行了实验研究,在大气环境下对硅微谐振器进行了光激电拾实验测试和光激光拾实验测试。成功观测到了硅微谐振器的一阶、二阶和三阶谐振状态。在光激光拾实验测试中提出了一种新颖的“单光源实验测试方法”,即:使用同一光源同时实现硅微谐振器的光热激振和微弱谐振信号的提取,这与传统的“双光源实验方法”相比,简化了实验系统,有利于实用化开发。  相似文献   

18.
聚合物波导微环谐振器的无热化设计   总被引:1,自引:1,他引:0  
从波导微环谐振器的谐振方程出发,推导出了波导微环谐振器的无热化条件和谐振波长温度依赖特性表达式,分析了硅衬底PSQ聚合物波导微环谐振器滤波功能的温度特性。通过选择合适的聚合物衬底来取代传统的硅衬底,可极大地减小聚合物波导微环谐振器的温度敏感性,给出了聚合物衬底选择的方法。研究结果表明,所设计的全聚合物波导微环谐振器,在温度从20~65℃范围内谐振波长漂移量最大值为-0.0085 nm,温度依赖波长漂移率最大值为-0.00090 nm/K,实现了无热化。  相似文献   

19.
用于高TcrfSQUID的高Tc超导平面谐振器   总被引:1,自引:1,他引:0  
我们设计并制备了用于高TcrfSQUID的超导平面谐振器,并测量了其谐振参数。实验表明,超导平面谐振器与分立元件式谐振器相比具有很高的品质因数,约为1000-6000。通过调节衬底材料,设计尺寸可以调节谐振频率。  相似文献   

20.
表面等离激元共振技术具有无需标记、灵敏度高、实时检测等优点,已广泛应用于生物医疗、环境监测及食品安全等领域。相对于传统贵金属材料表面等离激元共振传感器而言,铝表面等离激元共振传感器具有价格低廉、共振光谱带宽小等优点,已逐渐成为了该领域的研究热点。针对铝材料存在与生物分子兼容性差、易氧化等缺点,利用石墨烯化学稳定性好、比表面积大、抗氧化能力强、生物兼容性好等独特优势,将其作为与被测分子直接接触的传感层,提出了一种石墨烯覆盖铝纳米光栅的表面等离激元共振传感器。首先,基于多物理场有限元仿真软件建立了该传感器的物理模型,分别分析了石墨烯层数和铝光栅结构参数(占空比、高度、周期)对传感器共振光谱的影响。结果表明,石墨烯与铝光栅的复合有效增强了入射光波与传感器的相互作用,采用单层石墨烯与铝光栅复合时,共振峰具有最窄的光谱带宽。当铝纳米光栅结构Λ=600 nm,H=40 nm,η=70%时,光谱反射率为零。进一步分析了结构优化后的传感器的传感特性。结果表明,单层石墨烯覆盖铝纳米光栅传感器具有最高的品质因数24.5 RIU-1,其灵敏度高达626 nm·RIU-1。该传感器具有探测精度高、分子兼容性好等优点,能为生化分析、环境监测和食品安全等领域提供一个新的绿色传感平台。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号