首页 | 本学科首页   官方微博 | 高级检索  
     检索      

硅基底石墨烯器件的现状及发展趋势
引用本文:武佩,胡潇,张健,孙连峰.硅基底石墨烯器件的现状及发展趋势[J].物理学报,2017,66(21):218102-218102.
作者姓名:武佩  胡潇  张健  孙连峰
作者单位:1. 中国科学院纳米科学卓越创新中心, 国家纳米科学中心, 纳米系统与多级次制造重点实验室, 北京 100190; 2. 中国科学院大学材料科学与光电技术学院, 北京 100049
基金项目:国家重点研发计划纳米科技重点专项(批准号:2016YFA0200403)和国家自然科学基金(批准号:51472057)资助的课题.
摘    要:石墨烯是一种由单层碳原子紧密排列而形成的具有蜂窝状结构的二维晶体材料,特殊的结构赋予了其优异的性能,如高载流子迁移率、电导率、热导率、力学强度以及量子反常霍尔效应.由于石墨烯优异的特性,迅速激起了人们对石墨烯研究以及应用的热情.石墨烯沉积或转移到硅片后,其器件构建与集成和传统硅基半导体工艺兼容.基于石墨烯的硅基器件与硅基器件的有机结合,可以大幅度提高半导体器件的综合性能.随着石墨烯制备工艺和转移技术的优化,硅基底石墨烯器件将呈现出潜在的、巨大的实际应用价值.随着器件尺寸的纳米化,器件的发热、能耗等问题成为硅基器件与集成发展面临的瓶颈问题,石墨烯的出现为解决这些问题提供了一种可能的解决方案.本文综述了石墨烯作为场效应晶体管研究的进展,为解决石墨烯带隙为零、影响器件开关比的问题,采用了量子限域法、化学掺杂法、外加电场调节法和引入应力法.在光电器件研究方面,石墨烯可以均匀吸收所有频率的光,其光电性能也受到了广泛的关注,如光电探测器、光电调制器、太阳能电池等.同时,石墨烯作为典型的二维材料,其优越的电学性能以及超高的比表面积,使其作为高灵敏度传感器的研究成为纳米科学研究的前沿和热点领域.

关 键 词:石墨烯  场效应晶体管  光电器件  传感器
收稿时间:2017-07-04

Research status and development graphene devices using silicon as the subtrate
Wu Pei,Hu Xiao,Zhang Jian,Sun Lian-Feng.Research status and development graphene devices using silicon as the subtrate[J].Acta Physica Sinica,2017,66(21):218102-218102.
Authors:Wu Pei  Hu Xiao  Zhang Jian  Sun Lian-Feng
Institution:1. CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nonoscience and Technology, Beijing 100190, China; 2. College of Materials Science and Opt-electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Graphene, a two-dimensional sheet of sp2-hybridized carbon material, possesses excellent properties, such as high carrier mobility, high electrical conductivity, high thermal conductivity, strong mechanical strength and quantum anomalous Hall effect. So graphene quickly lights the enthusiasm for its research and application due to its superior performance. The silicon-based graphene devices are compatible with traditional silicon-based semiconductor technology. The combination of silicon-based graphene devices and silicon-based devices can greatly improve the overall performances of semiconductor devices. With the optimization of graphene preparation process and transfer technology, graphene devices using silicon as the substrate will show promising potential applications. With the scaling of device, the heat dissipation, power consumption and other issues impede the integration of silicon-based devices. Graphene provides a possible solution to these problems. In this paper, we summarize the graphene application in field effect transistor. The bandgap of graphene is zero, which will have adverse effect on the switching ratio of the device. In order to solve this problem, a variety of methods are used to open its bandgap, such as the quantum confinement method, the chemical doping method, the electric field regulation method, and the introduction stress method. In the field of optoelectronic devices, graphene can evenly absorb light at all frequencies, and its photoelectric properties have also been widespread concerned, such as photoelectric detector, photoelectric modulator, solar cell, etc. At the same time, graphene, as a typical two-dimensional material, possesses superior electrical properties and ultra-high specific surface area, and becomes the hottest material in high sensitivity sensors.
Keywords:graphene  field effect transistor  optoelectronic devices  sensor
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号