首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
State-to-state time-dependent quantum dynamics calculations are carried out to study F(~2P) + HO(~2Π) → O(~3P) +HF(~1Σ~+) reaction on 1~3A〞 ground potential energy surface(PES). The vibrationally resolved reaction probabilities and the total integral cross section agree well with the previous results. Due to the heavy–light–heavy(HLH) system and the large exoergicity, the obvious vibrational inversion is found in a state-resolved integral cross section. The total differential cross section is found to be forward–backward scattering biased with strong oscillations at energy lower than a threshold of 0.10 eV, which is the indication of the indirect complex-forming mechanism. When the collision energy increases to greater than 0.10 eV, the angular distribution of the product becomes a strong forward scattering, and almost all the products are distributed at θ_t = 0°. This forward-peaked distribution can be attributed to the larger J partial waves and the property of the F atom itself, which make this reaction a direct abstraction process. The state-resolved differential cross sections are basically forward-backward symmetric for v' = 0, 1, and 2 at a collision energy of 0.07 eV; for a collision energy of 0.30 eV,it changes from backward/sideward scattering to forward peaked as v increasing from 0 to 3. These results indicate that the contribution of differential cross sections with more highly vibrational excited states to the total differential cross sections is principal, which further verifies the vibrational inversion in the products.  相似文献   

2.
Quantum state-to-state dynamics of the N(4S) + H-2(X1+Σ) → NH(X3Σ) + H(2S) reaction is reported in an accurate novel potential energy surface constructed by Zhai et al.(2011 J. Chem. Phys. 135 104314). The time-dependent wave packet method, which is implemented on graphics processing units, is used to calculate the differential cross sections. The influences of the collision energy on the product state-resolved integral cross sections and total differential cross sections are calculated and discussed. It is found that the products NH are predominated by the backward scattering due to the small impact parameter collisions, with only minor components being forward and sideways scattered, and have an inverted rotational distribution and no inversion in vibrational distributions; both rebound and stripping mechanisms exist in the case of high collision energies.  相似文献   

3.
The quasi-classical trajectory(QCT) is calculated to study the stereodynamics properties of the title reaction H(2S)+NH(X3∑-) →N(4S)+H2 on the ground state 4A' potential energy surface(PES) constructed by Zhai and Han [2011 J.Chem.Phys.135 104314].The calculated QCT reaction probabilities and cross sections are in good agreement with the previous theoretical results.The effects of the collision energy on the k-k' distribution and the product polarization of H2 are studied in detail.It is found that the scattering direction of the product is strongly dependent on the collision energy.With the increase in the collision energy,the scattering directions of the products change from backward scattering to forward scattering.The distribution of P(θr) is strongly dependent on the collision energy below the lower collision energy(about 11.53 kcal/mol).In addition,the P(φr) distribution dramatically changes as the collision energy increases.The calculated QCT results indicate that the collision energy plays an important role in determining the stereodynamics of the title reaction.  相似文献   

4.
The effects of isotopic variants on stereodynamic properties for the title reactions have been investigated using a quasi-classical trajectory method based on the first excited state NH2(I^2A') potential energy surface [Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644]. The forward–backward symmetry scattering of the differential cross section can be observed, which demonstrates that all these reactions follow the insertion mechanism. Three angle distribution functions P(θr), P(φr), and P(θr, φr) with different collision energies and target molecules H2/D2/T2 are calculated. It is shown that the product rotational angular momentum is not only aligned, but also oriented along the direction perpendicular to the scattering plane. The title reaction is mainly governed by the "in-plane" mechanism through the calculated distribution function P(θr, φr). The observable influences on the rotational polarization of the product by the isotopic substitution of H/D/T can be demonstrated.  相似文献   

5.
<正>The quasi-classical trajectory(QCT) method based on the extended London-Eyring-Polanyi-Sato potential energy surface is used to investigate the product vibrational distribution,angular distribution and angle-resolved kinetic distribution of the reaction Ba+C3H7Br→BaBr+C3H7 at 2.58 kcal/mol.The calculated results show that the product BaBr vibrational distribution is quite hot,the vibrational population peaks are located at v = 12,and the angular product distribution tends to backward scattering.The calculated angle-resolved kinetic distribution shows that the kinetic distribution is obviously related to angle.The QCT results are always qualitatively acceptable and sometimes even quantitatively.  相似文献   

6.
Quasi-classical trajectory(QCT) calculations are reported for the H+LiH(v = 0–2, j = 0)→Li+H_2 reaction on a new ground electronic state global potential energy surface(PES) of the LiH_2 system. Reaction probability and integral cross sections(ICSs) are calculated for collision energies in the range of 0 eV–0.5 eV. Reasonable agreement is found in the comparison between present results and previous available theoretical results. We carried out statistical analyses with all the trajectories and found two main distinct reaction mechanisms in the collision process, in which the stripping mechanism(i.e., without roaming process) is dominated over the collision energy range. The polarization dependent differential cross sections(PDDCSs) indicate that forward scattering dominates the reaction due to the dominated mechanism. Furthermore,the reactant vibration leads to a reduction of the reactivity because of the barrierless and attractive features of PES and mass combination of the system.  相似文献   

7.
李永庆  杨云帆  于洋  张永嘉  马凤才 《中国物理 B》2016,25(2):23401-023401
Quasi-classical trajectory calculations are performed to study the stereodynamics of the H(~2S) + NH(a~1?) →H_2(X~1Σ_g~+) + N(~2D) reaction based on the first excited state NH_2(1~2A') potential energy surface reported by Li et al.[Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k–k' distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k–k' distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j' of the product H_2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment.  相似文献   

8.
We present a state-to-state dynamical calculation on the reaction S~++ H_2→ SH~+ +H based on an accurate ~X2 A~″ potential surface. Some reaction properties, such as reaction probability, integral cross sections, product distribution, etc.,are found to be those with characteristics of an indirect reaction. The oscillating structures appearing in reaction probability versus collision energy are considered to be the consequence of the deep potential well in the reaction. The comparison of the present total integral cross sections with the previous quasi-classical trajectory results shows that the quantum effect is more important at low collision energies. In addition, the quantum number inversion in the rotational distribution of the product is regarded as the result of the heavy–light–light mass combination, which is not effective for the vibrational excitation. For the collision energies considered, the product differential cross sections of the title reaction are mainly concentrated in the forward and backward regions, which suggests that there is a long-life intermediate complex in the reaction process.  相似文献   

9.
魏强 《中国物理 B》2014,23(2):23401-023401
The stereodynamics and reaction mechanism of the H′(^2S) + NH (X^3∑^-) → N(^4S) + H2 reaction are thoroughly studied at collision energies in the 0.1 eV-1.0 eV range using the quasiclassical trajectory (QCT) on the ground 4A″ potential energy surface (PES). The distributions of vector correlations between products and reagents P(φr), P(φr) and P(φr,φr) are presented and discussed. The results indicate that product rotational angular momentum j′ is not only aligned, but also oriented along the direction perpendicular to the scattering plane; further, the product H2 presents different rotational polarization behaviors for different collision energies. Furthermore, four polarization-dependent differential cross sections (PDDCSs) of the product He are also calculated at different collision energies. The reaction mechanism is analyzed based on the stereodynamics properties. It is found that the abstraction mechanism is appropriate for the title reaction.  相似文献   

10.
岳现房 《中国物理 B》2012,21(7):73401-073401
Stereodynamics for the reaction H+LiF(v=0, j=0) → HF+Li and its isotopic variants on the ground-state (1 2 A′) potential energy surface (PES) are studied by employing the quasi-classical trajectory (QCT) method. At a collision energy of 1.0 eV, product rotational angular momentum distributions P (θr), P (φr), and P (θr ,φr), are calculated in the center-of-mass (CM) frame. The results demonstrate that the product rotational angular momentum j′ is not only aligned along the direction perpendicular to the reagent relative velocity vector k, but also oriented along the negative y axis. The four generalized polarization-dependent differential cross sections (PDDCSs) are also computed. The PDDCS 00 distribution shows a preferential forward scattering for the product angular distribution in each of the three isotopic reactions, which indicates that the title collision reaction is a direct reaction mechanism. The isotope effect on the stereodynamics is revealed and discussed in detail.  相似文献   

11.
For an electron-electron collision with characteristic scale length larger than the relative gyro-radius of the two colliding electrons, when the initial relative parallel kinetic energy cannot surmount the Coulomb repulsive potential, reflection will occur with interchange of the parallel velocities of the two electrons after the collision. The Fokker–Planck approach is employed to derive the electron collision term C_R describing parallel velocity scattering due to the reflections for a magnetized plasma where the average electron gyro-radius is much smaller than the Debye length but much larger than the Landau length. The electron parallel velocity friction and diffusion coefficients due to the reflections are evaluated, which are found not to depend on the electron perpendicular velocity. By studying the temporal evolution of the H quantity due to C_R, it is found that C_R eventually makes the system relax to a state in which the electron parallel velocity distribution is decoupled from the perpendicular velocity distribution.  相似文献   

12.
沙广燕  袁久闯  孟长功  陈茂笃 《中国物理 B》2014,23(1):18202-018202
A theoretical study of the stereodynamics for reaction O(1D) + CH4→OH + CH3 has been carried out using the quasiclassical trajectory method(QCT) on a potential energy surface structured by Gonzalez et al. The integral cross sections(ICSs), differential cross sections(DCSs) and product rotational angular momentum polarization have been calculated. With the collision energy increasing, the ICS decreases. There is no threshold energy, because no barrier is found on the minimum energy path. The DCS results show that the backward and forward scatterings exist at the same time. With the collision energy increasing, the dominant rotation of the product changes from the right-handed direction to the left-handed direction in planes parallel to the scattering plane. In the isotopic effect study, the decrease of the mass factor weakens the polarization degree of the rotational angular momentum vectors of the products.  相似文献   

13.
A quasi-classical trajectory(QCT) calculation is used to investigate the vector and scalar properties of the D + Br O → DBr + O reaction based on an ab initio potential energy surface(X1A state) with collision energy ranging from 0.1 kcal/mol to 6 kcal/mol. The reaction probability, the cross section, and the rate constant are studied. The probability and the cross section show decreasing behaviors as the collision energy increases. The distribution of the rate constant indicates that the reaction favorably occurs in a relatively low-temperature region(T 100 K). Meanwhile, three product angular distributions P(θr), P(φr), and P(θr, φr) are presented, which reflect the positive effect on the rotational angular momentum j' polarization of the DBr product molecule. In addition, two of the polarization-dependent generalized differential cross sections(PDDCSs), PDDCS00 and PDDCS20, are computed as well. Our results demonstrate that both vector and scalar properties have strong energy dependence.  相似文献   

14.
刘世莉  石英 《中国物理 B》2011,20(1):13404-013404
This paper employs the quasi-classical trajectory calculations to study the influence of collision energy on the title reaction on the potential energy surface of the ground 3A' triplet state developed by Rogers et al. (J. Phys. Chem. A 2000 104 2308). It calculates the product angular distribution of P(θr), P(φr) and P(θr, φr) which reflects vector correlation. The distribution P(θr) shows that product rotational angular momentum vectors j' of the products are strongly aligned along the relative velocity direction k. The distribution of P(φr) implies a preference for left-handed product rotation in planes parallel to the scattering plane. Four different polarisation-dependent cross-sections are also presented in the centre-of-mass frame. Results indicate that OH is sensitively affected by collision energies of H2.  相似文献   

15.
A four-state model considering the relative velocity distribution function for calculating the cross section of laserinduced collisional energy transfer in a Sr-Li system is presented and profiles of laser-induced collision cross section are obtained.The resulting spectra obtained from different intermediate states are strongly asymmetrical in an opposite asymmetry.Both of the two intermediate states have contributions to the final state,and none of the intermediate states should be neglected.The peak of the laser-induced collisional energy transfer(LICET) profile shifts toward the red and the FWHM becomes narrower obviously with laser field intensity increasing.A cross section of 1.2 × 10-12 cm 2 at a laser field intensity of 2.17 × 10 7 V/m is obtained,which indicates that this collision process can be an effective way to transfer energy selectively from a storage state to a target state.The existence of saturation for cross section with the increase of the laser intensity shows that the high-intensity redistribution of transition probabilities is an important feature of this process,which is not accounted for in a two-state treatment.  相似文献   

16.
<正>The quasi-classical trajectory(QCT) method is used to calculate the stereo-dynamics of the exchange reaction H_a+LiH_b→LiH_a+H_b and its isotopic variants based on an accurate potential energy surface reported by Prudente et al.[Prudente F V,Marques J M C and Maniero A M 2009 Chem.Phys.Lett.474 18].The reactive probability of the title reaction is computed.The vector correlations and four polarization-dependent generalized differential cross sections(PDDCSs) at different collision energies are presented.The influences of the collision energy and the reagent rotation on the product polarization are studied in the present work.The results indicate that the product rotational angular momentum j’ is not only aligned,but also oriented along the direction perpendicular to the scattering plane. The product polarization distributions of the title reaction and its isotopic variants exhibit distinct differences which may arise from different mass combinations.  相似文献   

17.
The anechoic performance and mechanism of underwater elastic spherical shell covered with coating are studied at low frequencies.The acoustic cloak is anisotropic material,which can be designed with homogeneous isotropic materials on the basis of effective medium approximation theory.The analytic expression of scattering acoustic field from the shell covered with multilayered medium is formulated and the scattering form function,resonance mode,acoustic field distribution are computed,the scattering characteristics and mechanism of transmission are analyzed.The results show that the direction of sound transmission inside the multilayered medium is changed,the acoustic field is deflected gradually,and the acoustic energy flux is guided around the target,which reduces the scattering intensity at low frequencies,the acoustic intensity of target's surface is very weak.Excepting the first resonance peak in spectrum produced by the zero order partial wave,the other resonance modes of elastic spherical shell are not excitated and the multilayered medium can suppress the resonance of the spherical shell effectively.  相似文献   

18.
岳现房 《中国物理 B》2013,(11):275-281
A state-to-state dynamics analysis for the Li+HF(v=0,j=0)→LiF(v',j')+H collision reaction has been performed through quasiclassical trajectory(QCT)calculations.It is found that the differential cross section(DCS)of the LiF products from the title reaction is preferentially backward scattering for v=0,yet forward scattering for v=1 and 2.For v=3,the DCS exhibits forward,backward,and sideways scatterings.The variation of the internuclear distances and angles along the propagation time reveals that more than 99.08%of reaction trajectories undergo the direct reaction mechanism.The values of the polarization parameters a{1}1and a{2}0demonstrate that the product rotational angular moment j' is not only aligned perpendicular to the reagent relative velocity vector,but also oriented along the negative y axis.These product polarization results agree well with the recent quantum mechanical studies.The mechanism of these results was proposed and discussed in detail.  相似文献   

19.
宫明艳  许小涛  凤尔银 《中国物理 B》2011,20(11):113401-113401
Collisions of cold and ultracold BH in the v=0 level with the He atom are investigated using the quantum mechanical scattering formulation. The elastic and the inelastic cross sections are calculated using the two-dimensional ab initio potential energy surface. It is shown that the elastic cross section is larger than the inelastic one. When the collision energy is very low, the elastic cross section follows the Wigner threshold law and is one order of magnitude larger than that of He-O2, while it is much smaller than that of He-H2. The efficiency of the rotationally quenching state is given. The Δj=-1 transition is most efficient. The resonances are also found to occur at about the same translational energy (0.1-1 cm-1), which gives rise to steps in the rate coefficient at temperatures around 0.1-1 K.  相似文献   

20.
Vector correlations of the reaction N(2D)+ H2(X1Σ+g) → NH(a1?)+ H(2S) are studied based on a recent DMBESEC PES for the first excited state of NH2[J. Phys. Chem. A 114 9644(2010)] by using a quasi-classical trajectory method.The effects of collision energy and the reagent initial vibrational excitation on cross section and product polarization are investigated for v = 0–5 and j = 0 states in a wide collision energy range(10–50 kcal/mol). The integral cross section could be increased by H2 vibration excitation remarkably based on the DMBE-SEC PES. The different phenomena of differential cross sections with different collision energies and reagent vibration excitations are explained. Particularly,the NH molecules are scattered mainly in the backward hemisphere at low vibration quantum number and evolve from backward to forward direction with increasing vibration quantum number, which could be explained by the fact that the vibrational excitation enlarges the H–H distance in the entrance channel, thus enhancing the probability of collision between N atom and H atom. A further study on product polarization demonstrates that the collision energy and vibrational excitation of the reagent remarkably influence the distributions of P(θr), P(φr), and P(θr, φr).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号