首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
一种高功率掺铒光纤超荧光光源   总被引:7,自引:6,他引:1  
通过优化掺铒光纤各种参量,用一个980 nm激光二极管作抽运源,采用单程结构,在一根光纤后向获得功率高达31.74 mW(15.02 dBm)的C-波段ASE输出的同时,其前向得到了功率为10.14 mW(10.06 dBm)的L-波段ASE输出.通过简单连接组合可得到输出覆盖C+L波段(1525~1620 nm)功率>36 mW的掺铒光纤宽带光源.  相似文献   

2.
L-band EDFA性能与增益光纤长度关系的分析   总被引:1,自引:0,他引:1  
分析和模拟L_band EDFA的增益特性对其优化设计和实验有着重要的意义。基于Giles模型,数值模拟了L_band EDFA中的信号光、泵浦光和放大自发辐射(ASE)在一定泵浦功率下与铒光纤长度的关系;分析了L_band EDFA本征增益平坦的产生机理;数值模拟了小信号增益平坦特性。结果表明,在一定的泵浦功率下,如果在所选择的L_bandEDFA中铒光纤长度合适,则不需要任何平坦化处理就可以得到比较平坦的增益谱线。  相似文献   

3.
A dual-stage L-band gain-clamped erbium-doped fiber amplifier (GC-EDFA) by using backward C-band amplified spontaneous emission (ASE) is proposed. Compared with other similar GC-EDFAs, the proposed structure has higher and flatter clamped gain in L-band because of its optimal pump power and EDF length. The flatness from 1570 nm to 1600 nm arrives 0.77 dB, the bandwidth of 3 dB is more than 35 nm and the maximal input signal power arrives −15 dBm.  相似文献   

4.
A new configuration of L-band erbium-doped fiber amplifiers (EDFAs) is presented here. The system contains a double-pass L-band EDFA and an optical preamplifier. Different from conventional preamplified double-pass L-band EDFA systems in which only the forward ASE of the preamplifier is re-used as an auxiliary pump, the new system recycles the backward ASE of the preamplifier as well. Two kinds of main L-band EDFAs are studied, both of which include a section of un-pumped erbium-doped fiber placed in a loop reflector. An improvement of up to 110% in pump conversion efficiency is demonstrated with the proposed recycling of the backward ASE, with respect to the system without recycling.  相似文献   

5.
Wavelength tunable erbium-doped fiber ring laser operating in L-band   总被引:4,自引:0,他引:4  
We describe a novel erbium-doped fiber ring laser utilizing the backward amplified spontaneous emission (ASE) power as a secondary pump source so that it can operate in L-band stably. The output wavelength can be tuned in a wide range of 45 nm, from 1560 to 1605 nm. We also compared this scheme with the condition of not using the ASE as secondary pump source, and found this scheme could improve the performance of the laser when using the same components.  相似文献   

6.
This paper presents an efficient pumping scheme for L-band erbium-doped fiber (EDFA) amplifier to reach high gain and low noise performance in a double-pass configuration. The main L-band amplifier is composed of two sections of EDFs. A 980 nm and a 1480 nm pump lasers are used to pump the first section of EDF bi-directionally. The generated backward C-band amplified spontaneous emission noise from this EDF is used to pump a subsequent un-pumped section of EDF. In the double-pass scheme, a narrow-band fiber Bragg grating at each channel wavelength is used to back-reflect the L-band signal to make it amplified twice by the pair of EDFs. Compared with its conventional counterpart, this new double-pass configuration provides a lower noise figure and a higher gain. The pump conversion efficiency can be improved by more than 50% in a 3-channel demonstration by using the proposed configuration.  相似文献   

7.
一种结构新颖的L波段掺铒光纤激光器   总被引:1,自引:1,他引:0  
提出了一种结构新颖的L波段环形腔掺铒光纤激光器。用掺铒光纤作为增益介,采用980nm激光器作为前向抽运源,利用起偏器和偏振控制器获得L波段激光,利用光环形器将后向的放大自发辐射再引入铒光纤的前端,重复利用。当抽运功率为103mW时得到了阈值功率约为23.87mW,输出功率达6.34mW的激光输出,斜率效率约为8.05%,与没有重复利用后向放大自发辐射谱的掺铒光纤激光器做比较,该结构对L波段掺铒光纤激光器的性能有明显的提升作用。对于长度不合适的铒纤,在没有重复利用后向放大自发辐射谱时没有获得激光输出;而在利用后向放大自发辐射后,在阈值功率约为88mW时得到了激光输出,从而很好地证明了上述结论。  相似文献   

8.
Lee JH  Ryu UC  Park N 《Optics letters》1999,24(5):279-281
A novel structure that converts wasted backward amplified spontaneous emission (ASE) to seed photons for the amplifier stage is suggested for a high-power erbium-doped fiber (EDF) broadband source. A considerable increase in output power and bandwidth extension was achieved by placement of a segment of passive EDF in front of the amplifier stage, thus recycling backward ASE as the secondary pumping source for the passive EDF seed photon generator. Experimental results showed a dramatic increase in output ASE power of more than 10 dB for most radiation bands from 1540 to 1620 nm with the simple addition of an unpumped EDF segment to the ordinary fluorescence-source structure.  相似文献   

9.
新颖的双通道输出高功率掺铒光纤宽带光源   总被引:1,自引:3,他引:1  
王秀琳  黄文财 《光子学报》2007,36(1):124-127
在分析L波段放大自发辐射(ASE)谱产生原理的基础上,设计出一种新颖的双级结构掺铒光纤ASE宽带光源,该光源可在两个端口分别输出高功率的C波段和L波段的ASE谱.设计将C波段ASE谱注入到掺铒光纤中作为L波段ASE谱的二次抽运源,使得L波段ASE谱功率得到了有效提高.优化光源结构参量后从两个端口分别获得了12.97 dBm和12.81 dBm的C波段和L波段ASE宽带谱.将两个输出端口组合得到了功率为15.9 dBm,泵浦转换效率达到21.6%的C+L波段超宽带ASE光源.  相似文献   

10.
Based on dual-order stimulated Raman scattering (SRS) of a single 1395 nm Raman fiber laser in 75 km single mode fiber and its corresponding dispersion compensation module, a hybrid Raman/Erbium doped fiber amplifier (EDFA) for long wavelength band (L-band) amplification is realized by inserting a segment of EDF within the span. By comparing the performance of gain and noise in four hybrid amplifiers with different span configurations, we find that the distribution of the secondary L-band amplification obtained from the EDF along the link has a great influence on the performance of the hybrid amplifier. Both gain and noise performance of hybrid amplifier can be improved significantly by optimizing the location of the EDF. Moreover, we can extend the flat gain bandwidth from L-band to central wavelength band (C-band) plus L-band by recycling the residual first-order SRS to pump a segment of EDF with proper length.  相似文献   

11.
The paper proposes a novel two stage L-band erbium doped fiber amplifier with forward–backward pumping scheme for transmission of 32 wavelength division multiplexed (WDM) channels. It is gain clamped with an in-line fiber Bragg grating (FBG) to provide flat gain over 45 nm by restricting and reutilizing amplified spontaneous emission (ASE). We demonstrate that it provides an efficient small signal gain with minimum noise figure of over 20 dB and 5.5 dB, respectively, in the L-band region (1565–1610 nm) by comparing with its forward and backward pumped counterparts with fixed Er3+ fiber length of 20 m for −30 dBm/channel input power. We also obtain the gain and noise figure dependence as a function of each of the Er3+ fiber lengths, pump power (both 1480 and 980 nm), and temperature. Hence a 10 nm region (1580–1590 nm) has been acknowledged where temperature variations become constricted for 30 °C variations (15–45 °C).  相似文献   

12.
L波段掺铒光纤放大器的自发辐射谱与增益的研究   总被引:4,自引:0,他引:4  
利用Giles模型对L波段掺铒光纤放大器小信号增益特性进行了数值模拟,模拟结果表明最佳铒纤长度并不是一定值,它随输入信号波长的不同而改变,较短的波长对应较短的光纤长度;在数值模拟、分析的基础上,分别采用7m和9m的L波段铒光纤构成长波段掺铒光纤放大器,通过实验测量,分析比较了它们的自发辐射谱以及增益和噪声指数,得到了光纤长度对L波段增益谱、噪声指数和自发辐射谱的影响规律;最后,辅以C波段掺铒光纤放大器加以分析,指出了适合于放大L波段信号的最佳自发辐射谱型。  相似文献   

13.
A novel gain-clamped long wavelength band (L-band) erbium-doped fiber amplifier (EDFA) is proposedand experimented by using a fiber Bragg grating (FBG) at the input end of the amplifier. This designprovides a good gain clamping and decreases noise effectively. It uses two sections of erbium-doped fiber(EDF) pumped by a 1480-nm laser diode (LD) for higher efficiency and lower noise figure (NF). The gainis clamped at 23 dB with a variation of 0.5 dB from input signal power of -30 to -8 dBm for 1589 nm andNF below 5 dB is obtained. At the longer wavelength in L-band higher gain is also obtained and the gainis clamped at 16 dB for 1614 nm effectively. Because the FBG injects a portion of backward amplifiedspontaneous emission (ASE) back into the system, the gain enhances 5 dB with inputting small signal.  相似文献   

14.
一种高效率的L波段掺铒光纤ASE宽带光源   总被引:1,自引:1,他引:0  
王秀琳 《光子学报》2006,35(3):428-430
利用双程双向泵浦单级掺铒光纤的结构实现高效率的L波段掺铒光纤放大自发辐射输出,同时选择1480nm半导体激光器作为泵浦源,高掺杂铒光纤为增益介质,通过优化铒光纤长度,获得了在1566-1604 nm(38 nm),自发辐射谱功率高于-16 dBm,总输出功率13.7 dBm的L波段掺铒光纤放大自发辐射光源.该光源结构相比于双程前向泵浦结构的L波段掺铒光纤放大自发辐射光源,其泵浦效率从11.8%提高到23.4%.  相似文献   

15.
We experimentally investigate the single-pumped L-band (1570–1610 nm) erbium-doped fiber amplified spontaneous emission (ASE) source in four configurations with single-pass forward, single-pass backward, double-pass forward (DPF), and double-pass backward structures. The characteristics are examined and compared in terms of the output power, mean wavelength, spectral linewidth, and pumping conversion efficiency. Among them, only DPF configuration is satisfied, and other configurations are intrinsically hard to be an L-band ASE source for applications. Such results are significantly different as compared with their corresponding C-band counterparts.  相似文献   

16.
We demonstrate a single-stage gain-clamped L-band Erbium-doped fiber amplifier with 1480 nm pump wavelength. The gain-clamping technique is achieved by utilizing the backward propagation of C-band amplified spontaneous emission (ASE). This unwanted noise is reflected back into the optical amplifier and its intensity is adjusted using the variable optical attenuator. The C-band ASE sets the population inversion level along the Erbium doped-fiber and limits the L-band signal amplification to a specific value. The whole optical bandwidth in L-band can be employed for signal amplification since the saturating tone is out of the band. The gain dynamic range of 11.7 dB is obtained between 21.7 and 10.0 dB with noise figure of less than 5.5 dB for signal power up to 2 dBm.  相似文献   

17.
A hybrid L-band erbium-doped fibre amplifier (EDFA) with enhanced gain characteristic is demonstrated without a significant noise figure penalty. It uses a backward C-band amplified stimulated emission from both the ends of a bismuth-based EDFA system to pump an unpumped erbium-doped fibre (EDF) for gain enhancing. The maximum gain enhancement of 4.0dB is obtained at wavelength 1604nm with EDF length of 20m. The gain spectrum is reasonably fiat in this amplifier compared with the amplifier without an EDF. The gain varies from 27.4 dB to 30.2 dB at wavelength region 1564-1608 nm with incorporation of 20 m EDF. Noise figure also varies from 6.0 to 7.TdB at this wavelength region.  相似文献   

18.
低噪声、高增益的L -band EDFA的实验研究   总被引:3,自引:3,他引:0  
秦山  强则煊  何赛灵 《光子学报》2005,34(3):409-411
针对传统的L-band EDFA的工作效率低,提出了一种基于单根光纤光栅、泵浦分配、两段级联的EDFA的新结构,其中的光纤光栅用来反射无用的后向C-band ASE.系统地研究了泵浦比例和光纤光栅波长对增益噪声指数的影响关系.最后经实验验证,得到了低噪声、高增益的L-band的EDFA.其在输入信号光(1570 nm)功率为-30 dBm及泵浦功率为70 mW时,增益为22.26 dB,增益噪声指数为4.96 dB.  相似文献   

19.
We study the optimum fiber length for maximum gain of C- and L-band Erbium Doped Fiber Amplifiers (EDFAs) with fixed pump power. We show that the dependence of the optimum length on the wavelength and power of the signal is stronger in the L than in the C band and validate our findings trough distributed gain measurements. We also show that the predictions of the transcendental power equation model, which neglects the Amplified Spontaneous Emission (ASE), give accurate results for the optimum length even of L-band EDFAs, fact not obvious a priori because of the key rule played by the ASE as a pump source in amplifiers operating in this region.  相似文献   

20.
Spectral characteristics of the amplified spontaneous emission(ASE)from a novel single mode Er3+ doped tellurite fiber with D-type cladding is reported in this letter.When pumped at 980 nm,an ASE source that has nearly a 100-nm flat FWHM bandwidth is obtained with a fiber length of 30-60 cm. Variation of ASE spectra with pump powers and fiber lengths are measured.Output power up to 2.0 mW is obtained with a launched pump power of 660 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号