首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Ge1−xCx films deposited by using a medium frequency magnetron sputtering technique (MFMST) were analyzed with X-ray photoelectron and Raman spectroscopy. The deposited Ge1−xCx films consist of C, Ge, GeC and GeOy. The GeC content in the Ge1−xCx films linearly decreases, and the C content linearly increases with increasing deposition temperature from 150 to 350 °C. The GeC content decreases from 11.6% at a substrate bias of 250 V to a lowest value of 9.6% at 350 V, then increases again to 10.4% at 450 V. While the C content increases from 49.0% at the bias of 250 V to a largest value of 58.0% at 350 V and then maintains this level at 450 V. It is found that selecting a bias parameter seems more effective than deposition temperature if we want to obtain a higher content of GeC in the deposited films. In addition, a new method is presented in this paper to estimate the changes of GeC content in the Ge1−xCx films by observing the shifts of Ge-Ge LO phonon peak in Raman spectra for the Ge1−xCx films. The related mechanism is also discussed in this paper.  相似文献   

2.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si (1 0 0) and glass substrates. Chemical composition and interface properties have been studied by modelling Rutherford backscattering spectra (RBS) using SIMNRA programme. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Simulation of the energy spectra shows an interdiffusion profile in the thickest films, but no diffusion is seen in thinner ones. Microscopic characterizations of the films are done with X-ray diffraction (XRD) measurements. All the samples are polycrystalline, with an hcp structure and show a 〈0 0 0 1〉 preferred orientation. Atomic force microscopies (AFM) reveal very smooth film surfaces.  相似文献   

3.
Polycrystalline thin films of Ge-C were grown on Si (1 1 1) substrates by means of reactive pulsed laser deposition with methane pressure of 100 mTorr. Effect substrate temperature, Ts, on C incorporation to substitutional sites (x) in Ge1−xCx was investigated systematically by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyzes. The substrate temperatures were ranging from 250 to 400 °C. The substitutional C composition x in the films by XRD were estimated using the Vegard's linear law. The maximum value of x calculated by XRD was 0.032 for Ts of 350 °C. The position of the C 1s peak at 283.4 eV in the XPS spectrum confirmed the germanium-carbon alloys. XRD measurements indicated that x increased with Ts from 250 °C to 350 °C. At Ts = 400 °C, the estimation of x was lowered. However, the C content calculated by XPS analyzes increased with Ts being more these values than substitutional C composition x. XPS and XRD analyzes demonstrate that the remaining C atoms are incorporated to interstitial sites. The use of the Ts plays important roles in the incorporation of substitutional C and in restraining C-cluster formation in the reactive pulsed laser deposition growth of Ge-C/Si.  相似文献   

4.
Thin (AsSe)100−xAgx films have been grown onto quartz substrates by vacuum thermal evaporation or pulsed laser deposition from the corresponding bulk materials. The amorphous character of the coatings was confirmed by X-ray diffraction investigations. Their transmission was measured within the wavelength range 400-2500 nm and the obtained spectra were analyzed by the Swanepoel method to derive the optical band gap Eg and the refractive index n. We found that both parameters are strongly influenced by the addition of silver to the glassy matrix: Eg decreases while n increases with Ag content. These variations are discussed in terms of the changes in the atomic and electronic structure of the materials as a result of silver incorporation.  相似文献   

5.
Ultrafine Ce1−xNdxO2−δ (x=0-0.25) powders were synthesized by self-propagating room temperature synthesis. Raman spectra were measured at room temperature in the 300-700 cm−1 spectral range. The shift and asymmetric broadening of the Raman F2g mode at about 454 cm−1 in pure and doped ceria samples could be explained with combined size and inhomogenous strain effects. Increased concentration of O2− vacancies with doping is followed by an appearance of new Raman feature at about 545 cm−1.  相似文献   

6.
Thirty nanometer diameter Co-Pt nanowires of different composition were fabricated by electrodepositing the Co and Pt atoms to nanoporous anodized aluminium oxide (AAO) templates. The structure and magnetic properties are studied by transmission electron microscopy (TEM), induction-coupled plasma spectrometer (ICP), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The as deposited nanowires with Pt content about 50 at.% present a single ferromagnetic phase of fcc CoPt. When the Pt content of the nanowires varies from about 55 to about 75 at.%, the nanowires include a soft phase of fcc CoPt3 and a relatively hard phase of fcc CoPt and the two phases are separate as seen from the hysteresis loops. After annealing to 600 °C, the two phases coupled completely and the coupled phase has the same coercivity as the original hard one.  相似文献   

7.
The lead salts and their alloys are extremely interesting semiconductors due to their technological importance. The fabrication of devices with alloys of these compounds possessing detecting and lasing capabilities has been an important recent technological development. The high quality polycrystalline thin films of PbSe1−xTex with variable composition (0≤x≤1) have been deposited onto ultra clean glass substrates by vacuum evaporation technique. As deposited films were annealed in vacuum at 350 K. The optical, electrical and structural properties of PbSe1−xTex thin films have been examined. The optical constants (absorption coefficient and bandgap) of the films were determined by absorbance measurements in the wavelength range 2500-5000 nm using Fourier transform infrared spectrophotometer. The dc conductivity and activation energy of the films were measured in the temperature range 300-380 K. The X-ray diffraction patterns were used to determine the sample quality, crystal structure and lattice parameter of the films.  相似文献   

8.
A confocal Raman investigation of Pb1 − xLaxTi1 − x/4O3 (PLT) thin films grown by RF magnetron sputtering on PbOx/Pt/Ti/SiO2/Si substrates with an intermediate LaSrCoO3 (LSCO) layer was performed. The influence of the LaSrCoO3 buffer layer was analyzed taking advantage of the observed Raman spectral band variation, which varied according to different manufacturing procedures. In the presence of a LSCO layer, the A1(1TO) Raman mode, which was indicative of tetragonal distortion, was pronouncedly enhanced, and a slight deviation from the (0 0 1) plane of the film was observed from the angular dependence of the polarized Raman spectral intensity. Furthermore, the spectral band variation as well as the residual stress along the in-depth direction was measured in the film from cross-sectional spectral line scans. This latter measurement showed a relaxation of the lattice mismatch in the presence of LSCO and PbO layers.  相似文献   

9.
A series of polycrystalline samples of Mg1−xPbxB2 (0≤x≤0.10) were prepared by a solid state reaction method and their structure, superconducting transition temperature and transport properties were investigated by means of X-ray diffraction (XRD) and resistivity measurements. Mg1−xPbxB2 compounds were shown to adopt an isostructural AlB2-type hexagonal structure in a relatively small range of lead concentration, x≤0.01. The crystalline lattice constants were evaluated and were found to exhibit slight length compression as x increases. The superconducting transition temperature (Tc) steadily decreases with Pb doping. It is suggested that the mechanism of superconductivity reduction by lead doping can be attributed to the chemical pressure effect.  相似文献   

10.
X-ray diffraction experiments have been combined with Raman scattering and transmission electron microscopy data to analyze the result of rapid thermal annealing (RTA) applied to Zr films, 16 or 80 nm thick, sputtered on Si1−xGex epilayers (0≤x≤1). The C49 Zr(Si1−xGex)2 is the unique phase obtained after complete reaction. ZrSi1−xGex is formed as an intermediate phase. The C49 formation temperature Tf is lowered by the addition of Ge in the structure. Above a critical Ge composition close to x=0.33, a film microstructure change was observed. Films annealed at temperatures close to Tf are continuous and relaxed. Annealing at T>Tf leads to discontinuous films: surface roughening resulting from SiGe diffusion at film grain boundaries occurred. Grains are ultimately partially embedded in a SiGe matrix. A reduction in the lattice parameters as well as a shift of Raman lines are observed as T exceeds Tf. Both Ge non-stoichiometry and residual stress have been considered as possible origins for these changes. However, as Ge segregation has never been detected, even by using very efficient techniques, it is thought that the changes originate merely from residual stress. The C49 grains are expected to be strained under the SiGe matrix effect and shift of the Raman lines would indicate the stress is compressive. Some simple evaluations of the stress values indicate that it varies between −0.3 and −3.5 GPa for 0≤x≤1 which corresponds to a strain in the range (−0.11, −1.15%). X-ray and Raman determinations are in good agreement.  相似文献   

11.
Mixed thin films of (CdO)1−x(PbO)x and (CdS)1−x(PbS)x (x=0.25) were prepared on glass substrates by spray pyrolysis technique for various substrate temperatures 300, 320 and 340 °C. Structural and optical properties were studied. XRD studies reveal the formation of mixed films. The substrate temperature of 340 °C seems to be critical for the formation of CdO-PbO mixed films. It is observed that (CdS)1−x(PbS)x mixed films were formed at all the three substrate temperatures. The direct band gap value of (CdO)1−x(PbO)x and (CdS)1−x(PbS)x mixed films is about 2.6 and 2.37 eV, respectively.  相似文献   

12.
Numerical calculations based on first-principles are applied to study the electronic and structural properties of ternary zincblende AlInN alloy. The results indicate the lattice constant has a small deviation from the Vegard’s law. The direct and indirect bowing parameters of 4.731 ± 0.794 eV and 0.462 ± 0.285 eV are obtained, respectively, and there is a direct-indirect crossover near the aluminum composition of 0.817. The bulk modulus is monotonically increased with an increase of the aluminum composition, and the deviation parameter of bulk modulus of 10.34 ± 9.37 GPa is obtained. On the contrary, the pressure derivative of bulk modulus is monotonically decreased with an increase of the aluminum composition.  相似文献   

13.
Two alloys of the Co-Ge system were produced by mechanical alloying starting from the elemental powders in the compositions Co20Ge80 and Co40Ge60. The crystalline structures of the CoxGe100−x (x=20, 40) alloys obtained were investigated using the X-ray diffraction (XRD) technique. The measured XRD patterns showed the presence of the peaks corresponding to the crystalline m-CoGe phase and also to the high pressure and temperature phase c-CoGe in the as-milled sample for Co20Ge80, although it was milled at room temperature and pressure. For Co40Ge60, the crystalline Co3Ge2 phase was obtained, and structural data for all phases were determined by means of a Rietveld refinement procedure. The thermal stability of the phases was investigated performing a heat treatment of the alloys at 450 °C for 6 h and, after that, new XRD measurements were collected and were also studied using a Rietveld refinement procedure. The m-CoGe and Co3Ge2 phases seem to be very stable, but the relative amount of c-CoGe decreases a little, indicating a less stable phase, which can be explained by the fact that it is produced usually under extreme conditions.  相似文献   

14.
The correlated function expansion (CFE) interpolation procedure was presented to efficiently estimate principal energy band gaps and lattice constants of the quaternary alloy AlxGa1−xSbyAs1−y over the entire composition variable space. The lattice matching conditions between x and y for the alloy AlxGa1−xSbyAs1−y substrated to InAs and GaSb were obtained by optimizing the alloy lattice constant to that of the substrates. The corresponding principal band gaps (E(Γ), E(L), and E(X)) were also calculated along the lattice matching condition on each substrate (InAs and GaSb).  相似文献   

15.
This work assesses theoretically the potential of dilute nitride alloys of InNxSb1−x for long-wavelength IR applications. A 10-band k.p approximation modified to account for conduction/valence band coupling is implemented to extract the bandgap as a function of the nitrogen concentration in the alloy and the temperature. The calculations show the possibility to obtain a band closure at ∼2% of nitrogen for InSbN at 300 K. The absorption coefficient, and its temperature dependence, is then determined using an Elliot-like formalism, predicting stronger absorption properties associated with the enhancement of conduction band effective masses. This enhancement yields over an order of magnitude increase in the non-radiative Auger recombination lifetimes suggesting the potential of InNSb for significantly enhancing detectivity limits and operation temperatures of long-wavelength IR detectors.  相似文献   

16.
A series of SmCoAsO1−xFx (with x=0, 0.05, 0.1, and 0.2) samples have been prepared by solid state reactions. X-ray powder diffraction proved that all samples can be indexed as a tetragonal ZrCuSiAs-type structure. A clear shrinkage of the lattice constants a and c with increasing F content indicated that F has been doped into the lattice. The magnetic and transport properties of the samples have been investigated. Parent SmCoAsO compound exhibited complicated magnetism including antiferromagnetism, ferromagnetism, and ferrimagnetism. For the fluorine doped samples, the antiferromagnetic Néel temperatures were almost independent of the F content and metamagnetic transitions were observed below antiferromagnetic Néel temperatures. With increasing F content, high temperature (below 142 K) ferrimagnetic state gradually changed to ferromagnetic state. In the resistivity result, metallic conduction in the region of 2-300 K and Fermi liquid behavior at low temperatures were shown in all samples. Transport properties at applied magnetic fields showed anomalies at low temperatures.  相似文献   

17.
Ordered CoxPb1−x nanowire arrays embedded in the porous anodic aluminum oxide (AAO) template have been fabricated by electrodeposition. XRD experiments prove that neither hexagonal-close-packed (hcp) nor face-centered-cubic (fcc) Co peaks are detected when the Co component (x) is below 0.91. The coercivity (Hc) and squareness (Mr/Ms) are found to increase with ferromagnetic Co component and the maximum value is at the position x=1 (pure Co nanowires). Annealing effects cause Hc and Mr/Ms increase, which surpasses the pure Co nanowires in the 0.2<x<0.6 at the annealing temperature of 700 °C. Microstructure change during annealing process is proposed to explain the magnetic properties change of samples.  相似文献   

18.
The structure, magnetic property and magnetocaloric effect of GdCo2−xAlx (x=0, 0.06, 0.12, 0.18, 0.24, 0.4) compounds have been investigated by X-ray diffraction (XRD) and magnetic measurement techniques. The experimental results show that the GdCo2−xAlx (x≤0.4) compounds are single phase with a Laves-phase MgCu2-type structure. The Curie temperature Tc initially increases, and then decreases with increasing Al content. The maximum value of Tc, 418 K, is reached for the compound with x=0.06. The magnetic entropy change, which is determined from the temperature and field dependence of the magnetization by the Maxwell relation, decreases almost linearly with increasing Al content.  相似文献   

19.
The ferroelectric compounds Pb2Na1−xLaxNb5−xFexO15 and Pb0.5(5−x)LaxNb5−xFexO15 (0≤x≤1) with the tungsten bronze type structure have been investigated using Raman spectroscopy. The evolution of the spectra as a function of composition at room temperature is reported. In the frequency range 200-1000 cm−1 three main A1 phonons around 240 (υ1), 630 (υ2) and 816 (υ3) cm−1 were observed. The broadening of the Raman lines for high values of x originates from a significant structural disorder. This is in good agreement with the relaxor character of these compositions. The lowest-frequency part of the spectra, below 180 cm−1, reveals a structural change in the studied solid solutions. The behaviour of the Raman shift of the υ1 mode confirms that in Pb2Na1−xLaxNb5−xFexO15, a clear anomaly occurs in the vicinity of x=0.4.  相似文献   

20.
In this presentation we focus on the synthesis of buried multielemental semiconductor nanoparticles by sequential high dose ion implantation and post-implantation annealing. Nanocluster formation and alloying was studied by Raman-, Rutherford Backscattering Spectroscopy (RBS) and X-ray diffraction analysis (XRD) on a materials library of CdSxSe1−x nanoclusters buried in thermally grown SiO2 on silicon. Characteristic peak shifts of the LO-Raman signal and XRD-peaks due to varying S- and Se-fraction indicate that the ion beam synthesized clusters consist of a solid solution of Cd, S and Se. In addition the influence of the implanted dose ratios on the structural evolution of the nanocluster-SiO2 system will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号