首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanosized TiO2 particles were prepared by sol-gel method. The TiO2 particles were co-deposited with zinc from a sulphate bath at pH 4.5 using electrodeposition technique. The corrosion behavior of the coatings was assessed by electrochemical polarization, impedance, weight-loss and salt spray tests. Wear resistance and microhardness of the composite coating was measured. The smaller grain size of the composite coatings was observed in the presence of TiO2 and it was confirmed by the images of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques.  相似文献   

2.
Ni–Y2O3 nanocomposite coatings were prepared under direct current (DC) and pulse current (PC) using acetate bath. The microstructure and corrosion resistance of the coatings were characterized by means of XRD, SEM, AFM, and EIS. The results showed that the microstructure and performances of the coatings were greatly affected by Y2O3 content on the deposits prepared by DC and PC methods. The microhardness and corrosion resistance were enhanced in the optimum percentage of Y2O3 composite coatings. The PC composite coatings were exhibited compact surface, higher microhardness, and good corrosion resistance compared with that of the DC composite coatings.  相似文献   

3.
Ni-Co/nano TiO2 (Ni-Co-TiO2) composite coatings were prepared under pulse current and pulse reverse current methods using acetate bath. The microstructure and corrosion resistance of the coatings were characterized by means of XRD, SEM and EIS. Both the Ni-Co alloy and composite coatings exhibited single phase of Ni matrix with face centered cubic (fcc) crystal structure. The crystal orientation of the Ni-Co-TiO2 composite coating was transformed from crystal face (2 0 0) to (1 1 1) compared with Ni-Co alloy coatings. The results showed that the microstructure and performances of the coatings were greatly affected by TiO2 content on the deposits prepared by PC and PRC methods. The microhardness and corrosion resistance were enhanced in the optimum percentage of TiO2 composite coatings. The PRC composite coatings were exhibited from compact surface, higher microhardness and good corrosion resistance compared with that of the PC composite coating.  相似文献   

4.
Ni-Zn-P-TiO2 composite coatings were successfully obtained on low carbon steel by electroless plating technique. Deposits were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive analysis (EDS) studies. The hardness and microstructure of as plated and heat treated Ni-Zn-P and Ni-Zn-P-TiO2 composite coatings were analyzed. The change in microstructure and higher hardness was noticed for heat treated composite. The corrosion resistance behavior of as plated and heat treated Ni-Zn-P and Ni-Zn-P-TiO2 coatings was investigated by anodic polarization, Tafel plots and electrochemical impedance spectroscopic (EIS) studies in 3.5 wt% NaCl solution. The composite coating exhibited enhanced corrosion resistance property over Ni-Zn-P coating.  相似文献   

5.
In this paper, ultrasonic irradiation was utilized for improving the corrosion resistance of phosphate coatings on aluminum alloys. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effect of ultrasonic irradiation on the corrosion resistance of phosphate coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Various effects of the addition of Nd2O3 in phosphating bath on the performance of the coatings were also investigated. Results show that the composition of phosphate coating were Zn3(PO4)2 · 4H2O(hopeite) and Zn crystals. The phosphate coatings became denser with fewer microscopic holes by utilizing ultrasonic irradiation treatment. The addition of Nd2O3 reduced the crystallinity of the coatings, with the additional result that the crystallites were increasingly nubby and spherical. The corrosion resistance of the coatings was also significantly improved by ultrasonic irradiation treatment; both the anodic and cathodic processes of corrosion taking place on the aluminum alloy substrate were suppressed consequently. In addition, the electrochemical impedance of the coatings was also increased by utilizing ultrasonic irradiation treatment compared with traditional treatment.  相似文献   

6.
Advances in materials performance often require the development of composite system. In the present investigation, SiO2-reinforced nickel composite coatings were deposited on a mild steel substrate using direct current electrodeposition process employing a nickel acetate bath. Surface morphology, composition, microstructure and crystal orientation of the Ni and Ni-SiO2 nanocomposite coatings were investigated by scanning electron microscope, energy dispersive X-ray spectroscopy and X-ray diffraction analysis, respectively. The effect of incorporation of SiO2 particles in the Ni nanocomposite coating on the microhardness and corrosion behaviour has been evaluated. Smooth composite deposits containing well-distributed silicon oxide particles were obtained. The preferred growth process of the nickel matrix in crystallographic directions <111>, <200> and <220> is strongly influenced by SiO2 nanoparticles. The average crystallite size was calculated by using X-ray diffraction analysis and it was ~23 nm for electrodeposited nickel and ~21 nm for Ni-SiO2 nanocomposite coatings. The crystallite structure was fcc for electrodeposited nickel and Ni-SiO2 nanocomposite coatings. The incorporation of SiO2 particles into the Ni matrices was found to improve corrosion resistance of pure Ni coatings. The corrosion potential (E corr) in the case of Ni-SiO2 nanocomposite coatings had shown a negative shift, confirming the cathodic protective nature of the coating. The Ni-SiO2 composite coatings have exhibited significantly improved microhardness (615 HV) compared to pure nickel coatings (265 HV)  相似文献   

7.
ZrO2 nanoparticles was uniformly co-deposited into a nickel matrix by electroplating of nickel from a Watts bath containing particles in suspension which were monodispersed with dispersant under DC electrodeposition condition. It was found that morphology, orientation and hardness of the nanocomposite coatings with monodispersed ZrO2 nanoparticles had lots of difference from the nanocomposite coatings with agglomerated ZrO2 nanoparticles and pure nickel coatings. Especially, the result of hardness showed that only a very low volume percent (less than 1 wt.%) of monodispered ZrO2 nanoparticles in Ni-ZrO2 nanocomposite coatings would result in higher hardness of the coatings. The hardness of Ni-ZrO2 nanocomposite coatings with monodispersed and agglomerated ZrO2 nanoparticles were 529 and 393 HV, respectively. The hardness value of the former composite coatings was over 1.3 times higher than that of the later. All these composite coatings were two-three times higher than that of pure nickel plating (207 HV) prepared under the same condition. The strengthening mechanisms of the Ni-ZrO2 nanocomposite coatings based on a combination of grain refinement strengthening from nickel matrix grain refining and dispersion strengthening from dispersion state of ZrO2 nanoparticles in the coatings.  相似文献   

8.
The main purpose of this study is to develop trivalent chromium, Cr(III), conversion coatings on aluminum alloys. The influence of Cr(III) concentration and immersion time on structures and anticorrosive performance of the coatings has been investigated. Corrosion behaviors of the coatings were evaluated in a 0.5 M H2SO4 aqueous solution at room temperature using potentiodynamic polarization. The structure and valence state of the coatings were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The addition of Cr(III) ions to the conversion bath considerably changes structures and compositions of the coatings. The coatings with Cr oxides possess a denser and thinner structure. Moreover, the corrosion resistance of Cr(III) coatings tends to decline with increasing immersion time due to the dissolution of coatings in the dipping period. According to XPS analysis, the Cr(III) conversion coatings are composed of Cr2O3, Cr(OH)3, Al2O3, Al(OH)3, ZrO2, Zr(OH)4, AlF3, and ZrF4, but no hexavalent chromium component in the coatings. The result indicates that the coatings prepared in the solution with 0.01 M Cr(III) for 5 min have the smoothest and densest structure and the best anticorrosive performance among all of conversion coatings in this work.  相似文献   

9.
To increase the SiC content in Cr-based coatings, Cr-Al2O3/SiC composite coatings were plated in Cr(VI) baths which contained Al2O3-coated SiC powders. The Al2O3-coated SiC composite particles were synthesized by calcining the precursor prepared by heterogeneous deposition method. The transmission electron microscopy analysis of the particles showed that the nano-SiC particle was packaged by alumina. The zeta potential of the particles collected from the bath was up to +23 mV, a favorable condition for the co-deposition of the particles and chromium. Pulse current was used during the electrodeposition. Scanning Electron Microscopy (SEM) indicated that the coating was compact and combined well with the substrate. Energy dispersive X-ray analysis of Cr-Al2O3/SiC coatings demonstrated that the concentration of SiC in the coating reached about 2.5 wt.%. The corrosion behavior of the composite coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The data obtained suggested that the Al2O3/SiC particles significantly enhanced the corrosion resistance of the composite coating in 0.05 M HCl solution.  相似文献   

10.
Ni-Co/SiC nanocomposite coatings with various contents of SiC nano-particulates were prepared by electrodeposition in a Ni-Co plating bath containing SiC nano-particulates to be co-deposited. The influences of the nanoparticulates concentration, current density, stirring rate and temperature of the plating bath on the composition of the coatings were investigated. The shape and size of the SiC nano-particulates were observed and determined using a transmission electron microscope. The polarization behavior of the composite plating bath was examined on a PAR-273A potentiostat/galvanostat device. The wear behavior of the Ni-Co/SiC nanocomposite coatings was evaluated on a ball-on-disk UMT-2MT test rig. The worn surface morphologies of the Ni-Co/SiC nanocomposite coatings were observed using a scanning electron microscope. The corrosion behavior of the nanocomposite coatings was evaluated by charting the Tafel curves of the solution of 0.5 mol L−1 NaCl at room temperature. It was found that the cathodic polarization potential of the composite electrolyte increased with increasing SiC concentration in the plating bath. The microhardness and wear and corrosion resistance of the nanocomposite coatings also increased with increasing content of the nano-SiC in the plating bath, and the morphologies of the nanocomposite coatings varied with varying SiC concentration in the plating bath as well. Moreover, the co-deposited SiC nano-particulates were uniformly distributed in the Ni-Co matrix and contributed to greatly increase the microhardness and wear resistance of the Ni-Co alloy coating.  相似文献   

11.
Decorative and protective Ni-P amorphous coatings were electroplated onto NdFeB permanent magnet from an ortho-phosphorous acid contained bath. The influences of the main electroplating technological parameters including current density, bath pH, bath temperature and H3PO3 on the structure and chemical composition of Ni-P coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques in conjunction with X-ray diffraction (XRD), scanning transmission electron microscopy (SEM) and X-ray energy-dispersive spectrometry (EDX). The optimized amorphous Ni-P coated NdFeB can stand for ca. 180 h against neutral 3.0 wt.% NaCl salt spray without any pitting corrosion. Meanwhile, the results also showed that large phosphorous content is the precondition for Ni-P coatings to possess the amorphous structure, but too much high phosphorous content can damage the amorphous structure due to the separation of superfluous P from Ni2P/Ni3P and the resultant formation of multi-phase coatings (such as Ni2P-P).  相似文献   

12.
《Composite Interfaces》2013,20(5-7):551-558
Hydroxyapatite (HA) being the main mineral constituent of human hard tissues is highly bioactive. Good chemical bonds can be generated between HA and natural bone. However, the low strength and inherent brittleness of HA restrict its application usually to non-load-bearing conditions. In this work, production of a new kind of HA–ZrO2 composite by hot-press sintering method is described. Bioglass which has been widely used in reconstruction of damaged or diseased tissues was added into HA–ZrO2 composites. Comparing with pure HA ceramic, this type of composite possesses better mechanical strength and retains the bioactivity of HA as well. The liquid phase generated by bioglass has been effective in improving the sintering process of HA–ZrO2 composites. The phase composition of HA composite was characterized by XRD and their fracture surfaces were observed by SEM. The XRD results show that introducing a small amount of bioglass into HA–ZrO2 composite cannot enhance decomposition of HA. The SEM images show that there were fewer pores on the fracture surfaces of HA–ZrO2–bioglass composite than in the HA–ZrO2 composite. The flexural strength and toughness of HA–ZrO2 composite containing 2 wt% bioglass were 157 MPa and 1.63 MPa·m1/2, respectively.  相似文献   

13.
D. Dong 《Applied Surface Science》2009,255(15):7051-7055
Dispersible SiO2 nanoparticles were co-deposited with electroless Ni-P coating onto AISI-1045 steel substrates in the absence of any surfactants in plating bath. The resulting Ni-P/nano-SiO2 composite coatings were heat-treated for 1 h at 200 °C, 400 °C, and 600 °C, respectively. The hardness and wear resistance of the heat-treated composite coatings were measured. Moreover, the structural changes of the composite coatings before and after heat treatment were investigated by means of X-ray diffraction (XRD), while their elemental composition and morphology were analyzed using an energy dispersive spectrometer (EDS) and a scanning electron microscope (SEM). Results show that co-deposited SiO2 particles contributed to increase the hardness and wear resistance of electroless Ni-P coating, and the composite coating heat-treated at about 400 °C had the maximum hardness and wear resistance.  相似文献   

14.
TiN-based composite coatings with and without the addition of Cr were deposited by reactive plasma spraying (RPS) in air. Both sintered and mixed powder of Ti and B4C were used for the RPS process. A thermodynamic model was firstly used to estimate the complicated phase composition of composite coatings prepared by RPS. The phase composition, structures and properties of TiN-based coatings were investigated using XRD, SEM and a Vickers microhardness tester. The results show that the phases in TiN-based coatings do not generate according to priority of Gibbs free energy value due to non-equilibrium reactive course during thermal spraying. The coating deposited using sintered Ti and B4C powder is composed of two main phases (TiN and TiN0.3), two minor phases (Ti2O3 and TiB2), and a small fraction of TiC phase. The composition of the coating deposited using the mixed powder with Cr added is predominantly in the TiN and TiB2 phases, a smaller phase fraction of Ti2O3 and TiO2, and some unreacted Cr. The Vickers microhardness of the coating deposited using sintered powder is higher than that of using mixed powder. The composite coating deposited using mixed powder with the addition of Cr shows superior corrosion resistant to that using sintered powder when tested in 3.5 wt.% NaCl electrolytic solution.  相似文献   

15.
The influence of deposition temperature and concentration of NaNO2 in the phosphating bath on the surface morphology and coverage of iron-phosphate coatings on low carbon steel was investigated. The phosphate coatings were chemically deposited on steel from phosphate bath at different temperatures (30-70 °C) and with the addition of different amounts of accelerator, NaNO2 (0.1, 0.5 and 1.0 g dm−3). The morphology of phosphate coatings was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The composition of iron-phosphate coatings was determined using energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Surface coverage was evaluated by the voltammetric anodic dissolution (VAD) technique.It was shown that the increase in temperature of the NaNO2-free phosphating bath up to 70 °C caused an increase in surface coverage. The addition of NaNO2 in the phosphating bath significantly increased the surface coverage of phosphate coatings deposited at temperatures lower than 50 °C. The phosphate crystals were of laminated and needle-like structures for deposits obtained at temperatures lower than 50 °C, while at higher temperatures needle-like structure was transformed to laminated structure. The increase in NaNO2 concentration in the phosphating bath from 0.1 to 1.0 g dm−3 did not significantly increase the surface coverage, but decreased the crystals size, consequently favouring the phosphate nucleation and better packing of the crystals.  相似文献   

16.
Ni-B coatings have been deposited on the surfaces of commercial steels (SAE-1026). The depositions were carried out using the electroless plating technique employing a nickel chloride solution with borane-dimethylamine as the reducing agent. These specimens were subsequently heat treated at different temperatures (300-500 °C) and different periods of time. The obtained coating thickness was in the order of approximately 1.5 μm. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used to characterize the structure and superficial morphology of the coatings. Phases like Ni, Ni3B and Ni4B3 were observed through X-ray diffraction and confirmed by differential scanning calorimeter (DSC) studies. Some of the precipitated phases have been structurally characterized. The corrosion behavior of the coated surfaces was carried out by electrochemical impedance spectroscopy (EIS) using electrolytic sodium chlorine solutions with pH 2 and 7. The EIS results showed an active corrosion mechanism in acid solution while diffusion-reaction phenomena are predominant in neutral solution.  相似文献   

17.
Plasma electrolytic oxidation (PEO) is a cost-effective technique that can be used to prepare ceramic coatings on metals such as Ti, Al, Mg, Nb, etc., and their alloys, but this promising technique cannot be used to modify the surface properties of steels, which are the most widely used materials in engineering. In order to prepare metallurgically bonded ceramic coatings on steels, a combined technique of arc spraying and plasma electrolytic oxidation (PEO) was adopted. In this work, metallurgically bonded ceramic coatings on steels were obtained using this method. We firstly prepared aluminum coatings on steels by arc spraying, and then obtained the metallurgically bonded ceramic coatings on aluminum coatings by PEO. The characteristics of duplex coatings were analyzed by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The corrosion and wear resistance of the ceramic coatings were also studied. The results show that, duplex Al2O3/aluminum coatings have been deposited on steel substrate after the combined treatment. The ceramic coatings are mainly composed of α-Al2O3, γ-Al2O3, θ-Al2O3 and some amorphous phase. The duplex coatings show favorable corrosion and wear resistance properties. The investigations indicate that the combination of arc spraying and plasma electrolytic oxidation proves a promising technique for surface modification of steels for protective purposes.  相似文献   

18.
A novel Ni-B/TiC composite coating was synthesized by ultrasonic-assisted direct current electrodeposition. Ultrasonic technology was adopted to prevent the agglomeration of nanoparticle, improve the structure and corrosion resistance, using an ultrasonic bath at frequency 40 KHz and acoustic power 300 W. The influences of current density and deposition time on its structure and electrochemical behaviors were studied. Under ultrasonic dispersion, the composite coatings are smooth, compact with protrusion structure sparsely distributed on it. The average roughness (Sa) was about 13.6–26.1 nm. The crystallite size is 10–21 nm. The preferred orientation is Ni (1 1 1) texture. EIS results indicated that the corrosion resistance was greatly improved by ultrasonic-assisted method. The corrosion mechanism is consistent with one-time constant EEC model of Rs(CPEdlRct). With the increase of immersion time, the Rct of the composite coating often first increased and then decreased. Under ultrasonic, current density 2 A dm−2 and deposition time 20 min were the appropriate parameters for the optimal corrosion resistance and excellent long-term electrochemical stability in 3.5 wt% NaCl corrosive solution. This coating shows good application prospect for corrosion protection in aggressive environment.  相似文献   

19.
Ni-Co/MoS2 composite coatings were prepared by electrodeposition in a Ni-Co plating bath containing nano-sized MoS2 particles to be co-deposited. The polarization behavior of the composite plating bath was examined on a PAR-273A potentiostat/galvanostat device. The friction and wear behaviors of the Ni-Co/MoS2 composite coatings were evaluated with UMT-2MT test rig in a ball-on-disk contact mode. The morphologies of the original and worn surfaces of the composite coatings were observed on scanning electron microscope (SEM). It was found that the introduction of MoS2 nano-particulates in the electrolyte caused the shift towards larger negatives of the reduction potential of the Ni-Co alloy coating, and the co-deposited MoS2 showed no significant effect on the electrodeposition process of the Ni-Co alloy coating. However, the co-deposited MoS2 led to changes in the surface morphology and structure of the composite coating as well. Namely, the peak width of the Ni-Co solid solution for the composite coating is broader as compared to that of the Ni-Co alloy coating. The co-deposited MoS2 particulates were uniformly distributed in the Ni-Co matrix and contributed to increase tribological properties of the Ni-Co alloy coating.  相似文献   

20.
《Current Applied Physics》2010,10(3):719-723
In order to improve the corrosion resistance of ceramic coatings formed on Mg–5mass%Li substrate by micro-arc oxidation (MAO) method, two kinds of additives (Na2B4O7 and EDTA) were doped in Na2SiO3–Na3PO4 solution system. The surface and cross-section morphology feature, phase composition and elemental composition were examined by SEM, XRD and EDX, respectively. Corrosion resistance of ceramic coating was tested by electrochemical methods. It was revealed that all coatings were composed of MgO and Mg2SiO4, and had porous surface structure. Doping of additives had little effect on the elemental composition, while it influenced the morphological feature of the coating. The results of electrochemical tests showed that the coatings prepared in the solutions with additive had good corrosion resistance. The addition of EDTA to the solution made coatings thinner and more uniform which resulted in better general corrosion resistance. The addition of Na2B4O7 to the solution made coatings much thicker and compacter, which improved the pitting corrosion resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号