首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
罗博文  董建绩  王晓  黄德修  张新亮 《物理学报》2012,61(9):94213-094213
多功能微分器可以满足光计算和光信号处理中的多种需求, 增强灵活性. 本文从理论上推导了一种基于相位调制和线性滤波的多功能光学微分器. 并在实验中, 将传输谱线近似为线性的光纤延时干涉仪(DI)和相位调制器级联, 得到了输入信号的两种微分结果. 通过调节DI的驱动电压调节其传输谱的漂移, 当光载波位于DI的传输谱线的谷值, 则获得信号的光场微分, 当光载波位于DI传输谱的线性斜率处, 则得到输入信号的光强微分. 通过分析各种微分的平均误差, 发现DI的线性度越高, 平均误差越小. 同时基于DI传输谱线的梳状特性,证实了多信道信号的同时微分.  相似文献   

2.
Li F  Park Y  Azaña J 《Optics letters》2007,32(22):3364-3366
A simple and general technique for recovering the phase profile of a given optical waveform from temporal intensity measurements is introduced and experimentally demonstrated. The proposed method involves the measurement of the temporal intensity profiles at the input and output of a linear optical time differentiator. The signal phase profile can be unambiguously recovered from these intensity measurements using a direct and noniterative algorithm. Given that ultrafast optical differentiators can be readily implemented in all-fiber or free-space platforms, the proposed technique could be applied over time waveforms with durations ranging from the subpicosecond to the nanosecond regime.  相似文献   

3.
We theoretically propose a novel scheme to implement two types of optical differentiators using all-optical phase modulation and linear filtering. Differences between the two differentiators rely on whether the differentiated signals are formed on the optical intensity or optical field of the output signal, which in turns depends on the relative shift between the probe wavelength and the closest notches of a linear filter. A proof-of-concept experiment is carried out using a semiconductor optical amplifier and a fiber-based delay interferometer (DI). Both differentiators are obtained for periodical Gaussian pulses and pseudo random non-return-to-zero signals at various data rates. Defined as the mean absolute deviation of the measured waveform from the ideal one, total average errors of less than 18% are observed in all cases. The impact of probe wavelength on the total average errors is investigated. Due to periodical feature of the DI spectrum, we also demonstrate the capability of multi-channel differentiation.  相似文献   

4.
Using an ultrafast photonic first-order differentiator applied on a partially coherent field, the generation of two correlated temporal waveforms is reported and their correlation properties upon linear and nonlinear propagation along the two orthogonal polarization axes of a dispersive optical fiber are studied. Temporal correlations are maintained in linear propagation whereas Kerr nonlinearity generates anticorrelated temporal intensity patterns for both partially and uncorrelated fields. Experiments are in close agreement with the theoretical analysis.  相似文献   

5.
杨柳  郜中星  薛冰  张勇刚  蔡永茂 《物理学报》2018,67(23):234204-234204
光子带隙是指某一频率范围的波不能在周期变化的空间介质中传播,即这种结构本身存在“禁带”,并已成功地应用于滤波器、放大器和混频器等器件的设计中.此前,许多专家都致力于提高带隙的反射率,但其只能逐渐接近1.本文在囚禁于一维光晶格中的冷原子介质中实现两个可调光子带隙,并通过选择两基态为精细结构的三能级∧型原子系统,考虑自发辐射相干效应来探究这两个带隙的反射率.适当调节参数,探测场出现增益,从而获得较高反射率的带隙结构,甚至可以超过1.此外,两个带隙反射率还可以通过调节偶极矩之间的夹角以及非相干驱动场强度等参数来操控.  相似文献   

6.
We propose and numerically investigate an optical pulse re-shaping method based on multi-arm ultrafast optical differentiators. In this approach, the desired (arbitrary) optical pulse shape is synthesized by coherently overlapping different successive time derivatives of an input optical pulse (not necessarily a Gaussian-shape pulse), including the input pulse itself, with suitable relative weights. Time derivatives of (sub-)picosecond pulses can be obtained using first and higher-order ultrafast optical differentiators practically implemented with integrated waveguide or fiber-based linear filtering technologies. Different output pulse shapes can be generated from the same platform by properly programming the relative weights among the different pulse derivatives. The effective bandwidth of the output waveform is not necessarily limited by the input pulse bandwidth but rather it depends on the highest derivative order used for the pulse synthesis. Our results reveal that interesting transform-limited pulse shapes (including flat-top and parabolic waveforms) can be synthesized from Gaussian-like (e.g. Gaussian, sech) pulses using a simple and practical three-arm ultrafast differentiation system with amplitude-only relative weights.  相似文献   

7.
程杨  姚佰承  吴宇  王泽高  龚元  饶云江 《物理学报》2013,62(23):237805-237805
石墨烯材料应用到各种光波导器件中正成为新一代光子器件的重要发展方向之一,目前基于石墨烯的光纤和集成光子器件研究越来越受到国内外的重视. 本文建立了一种由微纳光纤耦合光倏逝场,并在石墨烯薄膜中传输的模型. 通过有限元分析法,研究了光在这种石墨烯波导中传输光场的强度分布和相位特性,并通过实验进行了验证. 结果表明,沿着微纳光纤-石墨烯光波导传播的倏逝场的强度分布和相位均受石墨烯材料作用,石墨烯材料能有效聚集和导行波导中传输的高阶模,在单位传输长度上具有更密集的等相位面. 本文提出了一种利用微纳光纤耦合光倏逝场研究石墨烯相位响应特性的新方法,对基于石墨烯波导的新型调制器、滤波器、激光器和传感器等光子器件的设计和应用具有一定的参考意义. 关键词: 石墨烯平面光波导 倏逝波 光场强度 相位  相似文献   

8.
As a revolutionary observation tool in life science, biomedical, and material science, optical microscopy allows imaging of samples with high spatial resolution and a wide field of view. However, conventional microscopy methods are limited to single imaging and cannot accomplish real-time image processing. The edge detection, image enhancement and phase visualization schemes have attracted great interest with the rapid development of optical analog computing. The two main physical mechanisms that enable optical analog computing originate from two geometric phases: the spin-redirection Rytov-Vlasimirskii-Berry (RVB) phase and the Pancharatnam-Berry (PB) phase. Here, we review the basic principles and recent research progress of the RVB phase and PB phase based optical differentiators. Then we focus on the innovative and emerging applications of optical analog computing in microscopic imaging. Optical analog computing is accelerating the transformation of information processing from classical imaging to quantum techniques. Its intersection with optical microscopy opens opportunities for the development of versatile and compact optical microscopy systems.  相似文献   

9.
HS Chan  ZM Hsieh  LH Peng  AH Kung 《Optics letters》2012,37(14):2805-2807
We demonstrate the use of a nonlinear photonic crystal to generate a harmonic comb and an ultrabroad-band acousto-optic modulator for the field amplitudes and phases of the comb to succeed in synthesizing femtosecond and subfemtosecond optical field waveforms. Nonsinusoidal fields of various shapes are synthesized and verified using shaper-assisted linear cross-correlation. The compact all-solid-state system could lead to the realization of a portable arbitrary optical waveform synthesizer that is analogous in many aspects to an RF function generator.  相似文献   

10.
严冬  王彬彬  白文杰  刘兵  杜秀国  任春年 《物理学报》2019,68(8):84203-084203
本文在典型的里德伯电磁感应透明系统中研究弱探测场在相互作用原子系统中的传播特性,重点关注基于偶极阻塞效应的探测场相位的合作光学非线性行为.通过与探测场透射率和光子关联作对比,发现相位的光学响应具有新特性:共振和Autler-Townes劈裂条件下相位对入射场强和初始光子关联不敏感,而在两者之间的频率范围内相位响应具有非线性特征,尤其在经典光频率处最显著.此外,提高主量子数和原子密度都会促进相位的非线性效应.综上,与探测场透射率和光子关联一样,相位可以作为合作光学非线性的另一个标识来刻画非线性现象,对里德伯电磁感应透明研究是一个有力的补充.  相似文献   

11.
Asghari MH  Park Y  Azaña J 《Optics letters》2011,36(18):3557-3559
We propose and experimentally demonstrate a novel design for temporal integration of microwave and optical intensity waveforms with combined high processing speed and a long operation time window. It is based on concatenating in series a discrete-time (low-speed) photonic integrator and a high-speed analog time-limited intensity integrator. This scheme is demonstrated here using a cascaded fiber-based interferometers' system (as a passive eight-point discrete-time integrator) and an analog time-limited intensity integrator. The latter is based on temporal intensity modulation of the input waveform with a rectangular-like incoherent energy spectrum followed by linear dispersion. Using this setup, we experimentally achieve accurate time integration of intensity signals with ~36 GHz bandwidths over an operation time window of ~4 ns, corresponding to a processing time-bandwidth product of >144.  相似文献   

12.
为了降低功耗、实现超快速响应,设计了一种基于双矩形腔边耦合等离子体波导系统,并研究了其等离子体诱导透明效应.采用光学Kerr效应超快调控石墨烯-Ag复合材料波导结构,实现1 ps量级的超快响应时间.动态调控等离子体波导的传输相移,当泵浦光强为5.83 MW/cm^2时,等离子体诱导透明系统能够实现透射光谱π相移,这是因为基于石墨烯-Ag复合材料结构等离子体波导具有大的等效光学Kerr非线性系数,表面等离子体激元局域光场和等离子体诱导透明效应慢光对光学Kerr效应产生了协同增强作用,大大降低了系统获得透射光谱π相移的泵浦光强.等离子体诱导透明效应透明窗口的可调谐带宽为40 nm,系统的群延时控制在0.15 ps到0.85 ps之间,并且光波通过间接耦合或者相位耦合机制实现了等离子体诱导透明效应相移倍增效应.耦合模式理论计算结果很好地吻合了时域有限差分法仿真模拟结果,研究结果对于低功耗、超快速非线性响应和紧凑型光子器件的设计和制作具有一定的参考意义.  相似文献   

13.
Optically controlled two-way optical switches are useful for high-speed photonic switches and rapidly reconfigurable optical interconnection networks. A directional coupler forms such a switch because the field can be switched from one waveguide to the other by altering the optical length of the waveguide. Nonlinear materials are incorporated in the waveguide so that the optical path length may be altered by using an optical control beam to vary the intensity of light. A finite element method is described that enables the modelling of the non-linear dual waveguide structure for arbitrary waveguide shapes. Spurious modes are avoided in the transverse magnetic field method and non-linearity is handled by iteration and assuming an equivalent non-linear relative permittivity.  相似文献   

14.
光子晶体的禁带特性是该新兴材料的最根本特征。本文运用平面波展开法(PWE)计算了一种正方晶格Si光子晶体材料的禁带特性,并基于该材料设计出一种红外波段的线缺陷光子晶体波导结构。运用时域有限差分法(FDTD)研究了线缺陷二维光子晶体波导宽度对通频带、电场强度及透射能量的影响,研究结果为二维光子晶体波导器件的开发和利用提供了理论支撑。  相似文献   

15.
Two-photon photopolymerization (TPP) with femtosecond laser is a promising method to fabricate threedimensional (3D) photonic crystals (PCs). Based on the TPP principle, the micro-fabrication system has been built. The 3D woodpile PCs with rod space of 2000 nm are fabricated easily and different defects are introduced in order to form the cross-waveguide and the micro-laser structure PCs. Simulation results of the optical field intensity distributions using finite-difference time domain (FDTD) method are given, which support the designs and implementation of the PC of two types in theory.  相似文献   

16.
在高Q值法布里珀罗腔中研究了二阶串级非线性相移.结果表明,通过改变入射光强,可以全光学控制基频光束的透射率和它的相移.基频透射光束的非线性相移相对入射光强的变化率被提高了腔精细度的平方.这可用作光子学开关器件 关键词: 二阶串级效应 法布里珀罗腔 非线性相移  相似文献   

17.
Real-time and single-shot ultra-fast photonic time-intensity integration of arbitrary temporal waveforms is proposed and demonstrated. The intensity-integration concept is based on a time-spectrum convolution system, where the use of a multi-wavelength laser with a flat envelope, employed as the incoherent broadband source, enables single-shot operation. The experimental implementation is based on optical intensity modulation of the multi-wavelength laser with the input waveform, followed by linear dispersion. In particular, photonic temporal intensity integration with a processing bandwidth of 36.8 GHz over an integration time window of 1.24 ns is verified by experimentally measuring the integration of an ultra-short microwave pulse and an arbitrary microwave waveform.  相似文献   

18.
用时域有限差分法研究了光子晶体量子阱中的量子化能态.研究发现,开腔与闭腔光量子阱结构共振透射峰的数目相同,位置几乎不变,但闭腔光量子阱出射光强更强,透射率更大,频率选择性更好,品质因子Q值更高.同时计算了开腔和闭腔光量子阱光场分布,结果表明,开腔光量子阱为行波阱,闭腔光量子阱为驻波阱,充分证实了闭腔光量子阱更能束缚光场的设想,对其作用机理进行了探讨.  相似文献   

19.
The problem of extreme focusing of an optical beam into the spatial region with wavelength dimensions is considered with the use of the special features of radiation interaction with isolated spherical particles. Results of numerical computations of the optical field intensity at the surface of silver particles of different radii upon exposure to laser radiation with different wavelengths are presented. It is demonstrated that the relative intensity of the plasmon optical field on the nanoparticle surface increases and the field focusing region decreases with increasing particle radius. Results of numerical computations illustrating the influence of the shell of composite nanoparticles comprising a dielectric core and a metal shell on the optical field intensity in the vicinity of the particle are presented. The problem of local optical foci of a transparent microparticle (photonic nanojets) is investigated. It is established that variation of the micron particle size, its optical properties, and laser radiation parameters allows the amplitude and spatial characteristics of the photonic nanojet region to be controlled efficiently.  相似文献   

20.
The geometric phase of light has been demonstrated in various platforms of the linear optical regime, raising interest both for fundamental science as well as applications, such as flat optical elements. Recently, the concept of geometric phases has been extended to nonlinear optics, following advances in engineering both bulk nonlinear photonic crystals and nonlinear metasurfaces. These new technologies offer a great promise of applications for nonlinear manipulation of light. In this review, we cover the recent theoretical and experimental advances in the field of geometric phases accompanying nonlinear frequency conversion. We first consider the case of bulk nonlinear photonic crystals, in which the interaction between propagating waves is quasi-phase-matched, with an engineerable geometric phase accumulated by the light. Nonlinear photonic crystals can offer efficient and robust frequency conversion in both the linearized and fully-nonlinear regimes of interaction, and allow for several applications including adiabatic mode conversion, electromagnetic nonreciprocity and novel topological effects for light. We then cover the rapidly-growing field of nonlinear Pancharatnam-Berry metasurfaces, which allow the simultaneous nonlinear generation and shaping of light by using ultrathin optical elements with subwavelength phase and amplitude resolution. We discuss the macroscopic selection rules that depend on the rotational symmetry of the constituent meta-atoms, the order of the harmonic generations, and the change in circular polarization. Continuous geometric phase gradients allow the steering of light beams and shaping of their spatial modes. More complex designs perform nonlinear imaging and multiplex nonlinear holograms, where the functionality is varied according to the generated harmonic order and polarization. Recent advancements in the fabrication of three dimensional nonlinear photonic crystals, as well as the pursuit of quantum light sources based on nonlinear metasurfaces, offer exciting new possibilities for novel nonlinear optical applications based on geometric phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号