首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用Husimi算符作为一个纯态密度算符的事实,我们导出了热场态的Husimi函数及其边缘分布.通过绘制相空间的Husimi分布图形,我们简要讨论了高斯展宽参数以及热真空态的温度对Husimi函数的影响.  相似文献   

2.
多光子激发相干态的Wigner函数   总被引:1,自引:0,他引:1       下载免费PDF全文
蓝海江  庞华锋  韦联福 《物理学报》2009,58(12):8281-8288
Wigner函数的负性是非经典量子态的重要判据之一.利用Fock态表象下Wigner函数的一般表达式,重构了相干态|z〉的k光子激发态|+k,z〉~akz〉(k≥1)的Wigner函数,并根据其数值结果讨论了该量子态的非经典特性(这里a-1为Bose湮没算符的逆算符,其作用相当于Bose产生算符).结果表明,不论k取奇数还是偶数,相干态的这些k光子激发态都具有非经典特性;而且k的取值越大,这些量子态的非经典特性越明显. 关键词: 非经典量子态 激发相干态 Wigner函数 非经典特性  相似文献   

3.
基于有序算符内的积分技术和量子力学相干态表象,本文研究了激发相干态在耗散量子通道中的Husimi函数的演化情况,首次推导了Husimi函数在耗散量子通道中的解析表达式,并通过绘制图形讨论了各种参数对Husimi函数的影响。  相似文献   

4.
增光子奇偶相干态的Wigner函数   总被引:1,自引:0,他引:1       下载免费PDF全文
孟祥国  王继锁  梁宝龙 《物理学报》2007,56(4):2160-2167
利用相干态表象下的Wigner算符, 重构了增光子奇偶相干态的Wigner函数.根据此Wigner函数在相空间中随复变量α的变化关系, 讨论了增光子奇偶相干态的非经典性质. 结果表明, 增光子奇偶相干态总可呈现非经典性质, 且在m取奇(或偶)数时, 增光子偶(或奇)相干态更容易出现非经典性质. 根据增光子奇偶相干态的Wigner函数的边缘分布, 阐明了此Wigner函数的物理意义. 同时, 利用中介表象理论获得了增光子奇偶相干态的量子tomogram函数. 关键词: 增光子奇偶相干态 Wigner函数 中介表象 tomogram函数  相似文献   

5.
余海军  杜建明  张秀兰 《物理学报》2011,60(9):90305-090305
本文运用IWOP技术推导出Wigner算符的相干态显式,计算出一类特殊单模压缩态 |z〉f,g=exp[-(|z|2)/2 +(fz+gz*)a+fga+2]|0〉的Wigner函数解析式,通过数值计算可以看到,参数fg的任一个取值固定时,另一个参数的旋转取值会使得特殊 关键词: IWOP技术 Wigner算符 Wigner函数  相似文献   

6.
王帅  张丙云  张运海 《物理学报》2010,59(3):1775-1779
利用量子相空间技术和信息熵理论,研究了热场动力学理论中量子纯态与相应混合态的Husimi分布函数及Wehrl熵的一致性问题.结果表明,热相干态与相应混合态的Husimi分布函数及Wehrl熵完全相同,支持了热场动力学理论.且热相干态的Wehrl熵与平移因子无关,故在热相干态中,量子系统的可观测量的量子涨落及不确定关系也与平移因子无关.  相似文献   

7.
压缩偶相干态的制备及其非经典特性   总被引:12,自引:3,他引:9       下载免费PDF全文
嵇英华 《物理学报》2003,52(2):332-336
通过保持非耗散介观LC电路的固有频率不变,而使电路参数作阶跃函数变化,就可将介观LC电路由初始的偶相干态制备到压缩偶相干态;在压缩偶相干态下,介观电路系统不仅有非经典的量子压缩效应,而且有非经典的反聚束效应. 关键词: 介观LC电路 单位阶跃函数 压缩算符 压缩偶相干态  相似文献   

8.
周青春  狄尊燕 《物理学报》2013,62(13):134206-134206
用全量子理论导出隧穿量子点分子-辐射场相互作用系统状态满足的微分方程组, 在相干态辐射场和量子点分子处于隧穿激发态及基态的初始条件下, 应用Pegg-Barnett相位理论计算和分析了辐射场的相位概率分布及相位涨落, 研究了声子-量子点分子作用对辐射场相位的影响, 并与Husimi相位分布做了比较. 结果表明, 温度显著影响光场相位概率分布的时间演化规律, 声子既可以抑制也可以增强辐射场相位扩散和涨落, 取决于量子点分子的初态. Husimi相位分布和Pegg-Barnett相位分布符合度相当高. 关键词: 量子点分子 声子 量子相位 Q函数')" href="#">Q函数  相似文献   

9.
双模压缩数态光场的Wigner函数及其特性   总被引:1,自引:0,他引:1       下载免费PDF全文
宋军  范洪义  周军 《物理学报》2011,60(11):110302-110302
借助纠缠态表象及Wigner算符在该表象下的表示,得到双模压缩数态的Wigner函数,数值计算画出相空间中Wigner函数的分布图,并加以分析,发现双模压缩数态两模之间相互关联、相互纠缠,对相空间中Wigner函数分布产生影响. 关键词: 双模压缩数态 Wigner函数 纠缠态表象  相似文献   

10.
广义压缩粒子数态的非经典性质及其退相干   总被引:1,自引:0,他引:1       下载免费PDF全文
徐学翔  袁洪春  胡利云 《物理学报》2010,59(7):4661-4671
研究了三参数的压缩算符产生的广义压缩粒子数态的非经典性质及其在光子损失通道中的退相干问题.利用有序算符内的积分技术和Weyl编序算符在相似变换下的不变性,简洁地导出了广义压缩粒子数态的Wigner函数(Laguerre-Gaussian函数).基于Wigner函数的演化积分公式,解析地推导出了在耗散通道中的Wigner函数表达式.特别地,根据Wigner函数负部体积讨论了其非经典性.  相似文献   

11.
Using the entangled state representation of Wigner operator and some formulae related to the two-variable Hermite polynomials, the Wigner function of the squeezed pair coherent state (SPCS) and its two marginal distributions are derived. Based on the entangled Husimi operator introduced by Fan et al. (Phys. Lett. A 358:203, 2006) and the Weyl ordering invariance under similar transformations, we also obtain the Husimi function of the SPCS and its marginal distribution functions. The comparison between the two quasibability functions shows that, for the same amount of information included in two functions, the solving process of the Husimi function is simpler than that of the Wigner function. Work supported by the Natural Science Foundation of Shandong Province of China under Grant Y2008A23 and the Natural Science Foundation of Liaocheng University under Grant X071049.  相似文献   

12.
In this paper, a parity-squeezing combinatorial operator S 1 with its normally ordered form is introduced, it is then applied to generate the even-odd squeezed coherent state, its Wigner function and Husimi function can be conveniently calculated by virtue of the coordinate representation of S 1.  相似文献   

13.
For the first time we introduce an operator Δ h (γ,ε;κ) for studying Husimi distribution function in phase space (γ,ε) for electron’s states in uniform magnetic field, where κ is the Gaussian spatial width parameter. The marginal distributions of the Husimi function are Gaussian-broadened version of the Wigner marginal distributions. Using the Wigner operator in the entangled state 〈λ | representation we find that Δ h (γ,ε;κ) is just a pure squeezed coherent state density operator | γ,ε κ κ γ,ε |, which brings much convenience for studying Husimi distribution, so we name Δ h (γ,ε;κ) the Husimi operator. We then derive Husimi operator’s normally ordered form that provides us with an operator version to examine various properties of the Husimi distribution. Work supported by the National Natural Science Foundation under the grant: 10775097.  相似文献   

14.
Based on the Husimi operator in pure state form introduced by Fan et al., which is a squeezed coherent state projector, and the technique ofintegration within an ordered product (IWOP) of operators, as well as theentangled state representations, we obtain the Husimi functions of theexcited squeezed vacuum states (ESVS) and two marginal distributions of theHusimi functions of the ESVS.  相似文献   

15.
Based on the Husimi operator in pure state form introduced by Fan et al., which is a squeezed coherent state projector, and the technique of integration within an ordered product (IWOP) of operators, as well as the entangled state representations, we obtain the Husimi functions of the excited squeezed vacuum states (ESVS) and two marginal distributions of the Husimi functions of the ESVS.  相似文献   

16.
GUO Qin 《理论物理通讯》2008,49(5):1305-1309
The q-p phase-space distribution function is a popular tool to study semiclassical physics and to describe the quantum aspects of a system. In this paper by using the pure state density operator formula of the Husimi operator Δh(q,p;κ)=|p,q〉κκ〈p,q| we deduce the Husimi function of the excited squeezed vacuum state. Then we study the behavior of Husimi distribution graphically.  相似文献   

17.
In this paper we study the character of the Wigner function and Husimi function of the one- and two mode combining squeezed state (OTCSS) on the basis of plotting the three dimensional graphics of the Wigner function and Husimi function. It is easy to calculate the Husimi function of the OTCSS in entangled two-mode state by virtue of the formula of entangled two-mode Husimi operator: Δ h (σ,γ;κ)=| σ,γ κ κ σ,γ | (Fan, H.-Y., Guo, Q. in Phys. Lett. A 358:203–210, 2006). It is clearly found that the evolution law of Husimi function of OTCSS is different from the Wigner function. Work supported by the specialized research fund for the doctoral progress of higher education in China.  相似文献   

18.
We introduce a new method to calculate the Wigner function when its corresponding Husimi function is given. A new formula is derived for calculating conveniently the Wigner function in two-mode entangled state representation. As application, we derive Wigner functions of some quantum states, such as two-mode entangled state, the electron's two-mode squeezed canonical coherent state, and the electron's coordinate eigenstate.  相似文献   

19.
周军  范洪义  宋军 《中国物理 B》2012,21(7):70301-070301
We construct a new type of photon-added squeezed coherent state generated by repeatedly operating the bosonic creation operator on a new type of squeezed coherent state [Fan H Y and Xiao M 1996 Phys. Lett. A 220 81]. We find that its normalization factor is related to single-variable Hermite polynomials. Furthermore, we investigate its statistical properties, such as Mandel’s Q parameter, photon-number distribution, and Wigner function. The nonclassicality is displayed in terms of the intense oscillation of photon-number distribution and the negativity of the Wigner function.  相似文献   

20.
In this paper, we determine the normalization factor of photo-added squeezed vacuum state (PASVS) as a Legendre polynomial of the squeezing parameter by virtue of principle of mathematical induction, and derive the normally ordered density operator of PASVS in dissipative channel. In addition, we also give the explicit analytical expression of Husimi function in dissipative channel and study its behavior with evolution time graphically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号