首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose the optical generation of W states for three atomic and four atomic qubits, with each qubit trapped in a separate cavity and coupled to the cavity laser. A single-photon source and two classical fields are employed in the present scheme. By encoding the quantum information of each qubit on the degenerate ground states of the atom, we obtain the atomic entanglement that is relatively stable against spontaneous emission. It is demonstrated that the three- and four-atomic W states can be produced deterministically via a proper manipulation of the atom-cavity interaction sequence and time. Generalization of the present scheme to prepare multi-atomic W states is also discussed.  相似文献   

2.
We propose a scheme for teleportation of an arbitrary two-mode N-photon entangled states in cavity QED. The scheme is based on the resonant interaction between Λ-type atoms and two-mode cavity fields. In contrast to all the theoretical schemes proposed previously in cavity QED for teleportation of two-mode cavity field states, in the present scheme, the established entanglement for the quantum channel is the type of the multi-dimensional entanglement between the symmetric multi-atom Dicke states and two-mode N-photon states. Therefore, the scheme extends the scope of the theoretical study of the teleportation.  相似文献   

3.
吴熙  陈志华  张勇  陈悦华  叶明勇  林秀敏 《中国物理 B》2011,20(6):60306-060306
Schemes are presented for realizing quantum controlled phase gate and preparing an N-qubit W-like state, which are based on the large-detuned interaction among three-state atoms, dual-mode cavity and a classical pulse. In particular, a class of W states that can be used for perfect teleportation and superdense coding is generated by only one step. Compared with the previous schemes, cavity decay is largely suppressed because the cavity is only virtually excited and always in the vacuum state and the atomic spontaneous emission is strongly restrained due to a large atom-field detuning.  相似文献   

4.
Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given.  相似文献   

5.
We propose a simple scheme to generate χ-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit. The experimental feasibility of our scheme is also shown.  相似文献   

6.
We propose a concentration scheme of the W class state via cavity QED technique. In our scheme the influences of cavity decay and atomic spontaneous emission have been considered. Furthermore, the atomic spontaneous emission has been suppressed by using non-radiative transitions in atoms with three-level structure, and the photonic qubit is used as flying qubit and atomic qubit as stationary qubit. Therefore our scheme is comparatively easy to realize within techniques presently available.  相似文献   

7.
利用三粒子纠缠态建立量子隐形传态网络的探讨   总被引:10,自引:0,他引:10       下载免费PDF全文
周小清  邬云文 《物理学报》2007,56(4):1881-1887
利用W态纠缠源可以产生三纠缠粒子,用这些相互纠缠的粒子作为量子信道,再辅以经典信道传送Bell基联合测量信息和von Neumann测量信息,便可实现量子隐形传态网络.基于上述思想,研究了三纠缠粒子量子隐形传态网络的物理基础,得到了基于三粒子W 关键词: 量子通信 量子隐形传态 W态')" href="#">W态  相似文献   

8.
To implement generalized quantum measurement (GQM) one has to extend the original Hilbert space. Generally speaking, the additional dimensions of the ancilla space increase as the number of the operators of the GQM n increases. This paper presents a scheme for deterministically implementing all possible n-operator GQMs on a single atomic qubit by using only one 2-dimensional ancillary atomic qubit repeatedly, which remarkably reduces the complexity of the realistic physical system. Here the qubit is encoded in the internal states of an atom trapped in an optical cavity and single-photon pulses are employed to provide the interaction between qubits. It shows that the scheme can be performed remotely, and thus it is suitable for implementing GQM in a quantum network. What is more, the number of the total ancilla dimensions in our scheme achieves the theoretic low bound.  相似文献   

9.
Several quantum signature schemes are recently proposed to realize secure signatures of quantum or classical messages. Arbitrated quantum signature as one nontrivial scheme has attracted great interests because of its usefulness and efficiency. Unfortunately, previous schemes cannot against Trojan horse attack and Do S attack and lack of the unforgeability and the non-repudiation. In this paper, we propose an improved arbitrated quantum signature to address these secure issues with the honesty arbitrator. Our scheme takes use of qubit states not entanglements. More importantly, the qubit scheme can achieve the unforgeability and the non-repudiation. Our scheme is also secure for other known quantum attacks.  相似文献   

10.
The interaction between a superconducting phase qubit and the two-level systems located inside the Josephson tunnel barrier is described by the XY model, which is naturally used to implement the i-SWAP gate. With this gate, we propose a scheme to efficiently generate multi-qubit entangled states of such two-level systems, including multipartite W state and cluster states. In particular, it is found that, with the help of the phase qubit, the entanglement witness can be used to efficiently detect the produced multi-qubit entangled states.  相似文献   

11.
Recently, Yeo and Chua introduced a genuine four-qubit entangled state |χ〉 which can implement perfect teleportation of an arbitrary two-qubit state [Y. Yeo, W.K. Chua, Phys. Rev. Lett. 96 (2006) 060502]. It has been shown that the state |χ〉 is inequivalent to the well-known Greenberger-Horne-Zeilinger state, W state, and linear cluster state, in terms of stochastic local operations and classical communication [C.F. Wu, Y. Yeo, L.C. Kwek, C.H. Oh, Phys. Rev. A 75 (2007) 032332]. This “new” class of state has many interesting entanglement properties and possible applications in quantum-information processing and fundamental tests of quantum mechanics. Here, we propose a simple scheme to generate the state |χ〉 in cavity quantum electrodynamics. Our idea may be helpful for in-depth study on such a class of state and its practical applications.  相似文献   

12.
We propose to implement a quantum switch scheme for coupling highly detuned superconducting qubits connected by a gap-tunable bridge qubit. By modulating the frequency of the bridge qubit, it can be used as a coupler to switch on/off and adjust the coupling strength between the initially non-interaction qubits. It is shown that the proposals of quantum information transfer and quantum entangled gate between two highly detuned qubits can be implemented with high fidelity. Moreover, we extend the case of coupling the switch to multiple qubits for the generation of W states. The advantages of our scheme are that it eliminates the need for tuning the gaps of the qubits and the cross-talk interaction is greatly suppressed. The influence of decoherence and parameter variation is also investigated by numerical simulation, which suggests that the present scheme is feasible in current experiment.  相似文献   

13.
In this paper we propose two schemes for quantum information splitting via tripartite entangled states. Explicit protocols for the quantum information splitting of a single qubit state and an arbitrary two-qubit entangled state are illustrated. We also consider the security against certain eavesdropping attacks. Moreover, a generalization of the scheme to multi-particle case is also outlined.  相似文献   

14.
孟建宇  王培月  冯伟  杨国建  李新奇 《物理学报》2012,61(18):180302-180302
基于超导传输线和超导量子比特相互耦合的电路量子电动力学(quantum Electrodynamics, QED)系统, 是目前固态量子信息领域的一个倍受关注的物理系统, 也是研究量子测量和量子控制的理想实验平台. 由于其中涉及的驱动场和超导传输线谐振腔支持的光子频率都在微波区, 在量子测量和量子控制研究中往往遇到 大量光子数引起的状态空间维数过大带来的数值模拟方面的困难. 为了避免这个困难, 往往采取"消除"光子自由度的办法, 建立一个只保留量子比特状态自由度的有效描述方案. 本文通过对单比特的量子测量动力学的数值模拟, 检验了 "绝热消除"和"极化子变换"两种方案的适用条件. 结果表明, 在量子非破坏(quantum non-demolition, QND) 测量情况下, 极化子变换精确适用于 任意驱动强度和任意(光子)泄漏速率微腔; 但在非QND测量情况下, 极化子变换相对通常的绝热消除方案, 并无优势. 在强泄漏微腔和弱耦合情况下, 两种消除光子自由度的方法都可以较好地描述 测量动力学; 但如果微腔光子泄漏速率不是很大或量子比特与微腔耦合较强, 则需要纳入光子自由度做完整模拟, 此时的量子测量属性是一个尚待研究的课题.  相似文献   

15.
We study optical schemes for generating both a displaced photon and a displaced qubit via conditional measurement. Combining one mode prepared in different microscopic states (one-mode qubit, single photon, vacuum state) and another mode in macroscopic states (coherent state, single photon added coherent state), a conditional state in the other output mode exhibits properties of a superposition of the displaced vacuum and a single photon. We propose to use the displaced qubit and entangled states composed of the displaced photon as components for quantum information processing. Basic states of such a qubit are distinguishable from each other with high fidelity. We show that the qubit reveals both microscopic and macroscopic properties. Entangled displaced states with a coherent phase as an additional degree of freedom are introduced. We show that additional degree of freedom enables to implement complete Bell state measurement of the entangled displaced photon states.  相似文献   

16.
Based on the interference effect of indistinguishable polarized photons leaking out of separated cavities with each atom trapped in separate cavity, using quantum nondemolition detection, we propose the robust schemes for the generation of N-atom GHZ state, three-atom W state and four-atom cluster state with a certain success probability. In Lamb-Dicke limit, the schemes do not require the simultaneous click of the photon-detectors. These made the schemes more realizable in experiments. Meanwhile, the advantage of the scheme is that the fidelity of the entangled states is not affected by the atomic spontaneous, cavity decay, and imperfection of the photodetectors. The schemes would be useful steps towards long-distance quantum communication.  相似文献   

17.
Qudit entangled states have proven to offer significant advantages with respect to qubit states regarding the implementation of quantum cryptography or computation schemes. Here we propose and experimentally implement a scalable scheme for preparing and analyzing these states in the time–energy degree of freedom of two-photon pairs. Using the scheme, the entanglement of (2×4)-dimensional states is demonstrated.  相似文献   

18.
We propose a scheme for teleporting a single qubit state employing a unique three-particle W state as quantum channel. By adopting QED cavity technologies, our scheme does not involve the Bell-state measurements(BMs). An unknown state a|0〉 + b|1〉 can be probabilistically teleported by communicators' single particle measurements, unitary operations and classical communications. We can perfectly teleport quantum state ½1√2(|0〉 +|1〉) with 100% probability.  相似文献   

19.
李蓬勃  李福利 《中国物理 B》2011,20(9):90304-090304
A protocol is proposed to generate atomic entangled states and implement quantum information transfer in a cavity quantum electrodynamics system. It utilizes Raman transitions or stimulated Raman adiabatic passages between two systems to entangle the ground states of two three-state Λ-type atoms trapped in a single mode cavity. It does not need the measurements on cavity field nor atomic detection and can be implemented in a deterministic fashion. Since the present protocol is insensitive to both cavity decay and atomic spontaneous emission, it may have some interesting applications in quantum information processing.  相似文献   

20.
We propose a method to prepare multipartite entangled states such as cluster states and graph states based on the cavity input-output process and single photon measurement. Two quantum gates, a controlled phase gate and a fusion gate between two atoms trapped in respective cavities, are proposed to prepare atomic cluster states and graph states with one and two dimensions. We also introduce a scheme that can generate an arbitrary multipartite photon duster state which uses two coherent states as a qubit basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号