首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
沸腾系统中的分岔和突变现象   总被引:2,自引:0,他引:2  
本文利用分岔理论分析了沸腾形态的转变,指出形态转变实际上对应着液相失稳的亚临界分岔和超临界分岔,核化中的不断分岔现象是导致活化核心随机开关和壁温呈混饨特性的主要原因,对传统的等壁温传热模型和人们广泛应用的平均活化核心密度的概念提出了挑战。利用突变理论的基本思想,讨论了沸腾系统中的突变和滞后,深入分析了流速、过冷度和重力对过渡沸腾的影响.  相似文献   

2.
针对常规闭式并联微通道内流动沸腾换热存在气泡生长受限产生的堵塞效应以及不同通道内气泡核化生长不同步导致的并联通道传热不稳定性等问题,设计了一种顶部联通型开式并联微通道蒸发器。采用无水乙醇为工质,在入口过冷度为15℃、质量流速为175 kg·m~(-2)·s~(-1)及热流密度270~761 kW·m~(-2)条件下,开展了该新型微通道冷却器中流动沸腾换热的实验研究,发现了传热系数随干度的增加呈现三类典型趋势,即传热系数单调上升、传热系数先上升后下降再上升、传热系数先上升再保持基本不变;结合高速可视化流型研究,发现了与流型密切关联的三类传热机理,即:1)以气泡核化为主的核态沸腾换热;2)上游核态沸腾为主,下游两相强制对流换热主导;3)偏离核态沸腾后的膜态沸腾换热。分析表明,沸腾数Bo是主导三类传热模式的主要无量纲数。  相似文献   

3.
过冷态超流氦中的稳态传热   总被引:1,自引:1,他引:0  
本文详细研究了过冷态超流氦(Hellp)中的稳态传热,内容包括临界热流密度、膜沸腾传热系数、以及过冷态超流氦浴温度和压力对稳态传热特性的影响.对最大临界热流密度的理论性探讨——“相对临界热流密度法”较为成功地阐述了 Hellp 的最大临界热流密度.  相似文献   

4.
矩形微槽道饱和沸腾临界热流密度特性   总被引:4,自引:2,他引:2  
对矩形微槽中的流动沸腾临界热流密度进行了实验研究。研究CHF随质量流速、进口过冷度和出口干度的增加而出现的变化趋势,以及槽道尺寸对CHF的影响。搭建试验平台,在不同槽道当量直径、较大范围的质量流速和不同进口过冷度条件下,获得以去离子水为工质两相沸腾传热的实验数据。由于常规尺寸槽道CHF预测关联式并不具有普遍性,所以提出了一个适用于微槽道饱和沸腾CHF的预测模型。并通过与该文以及参考文献中实验数据进行对比,验证了该模型的适用性。  相似文献   

5.
本文开展了亚临界压力下垂直上升内螺纹管中水的传热特性的实验研究,并与对应条件下光管内水的传热特性进行了对比、分析.结果发现:内螺纹管和光管中两相饱和流动沸腾换热随热流密度的增加或压力的升高而增大,基本不随质量流速的变化而变化;相同工况下内螺纹管的饱和沸腾换热系数大约为光管的1.1~1.2倍。内螺纹管和光管的过冷沸腾起始干度都随质量流速的减小或者压力的升高或者热流密度的增大而增大;在相同工况下本文实验内螺纹管中的过冷沸腾起始干度比光管中的要小至少0.2。光管中主要发生偏离核态沸腾(DNB),临界干度随热流密度的减小或质量流速的增加或压力的降低而增大;内螺纹管中主要发生烧干,运行参数对临界干度的影响不大。  相似文献   

6.
杞卓玲  贾力  党超 《工程热物理学报》2021,42(12):3265-3273
本文针对水平矩形通道内非共沸混合工质的流动沸腾分层流状态,同时考虑靠近其气液界面处气相与液相浓度边界层的存在,对液相浓度边界层的传质系数进行了修正,构建了对应的流动沸腾液膜蒸发模型,以R134a/R245fa混合工质为研究对象,探讨了不同入口组分质量、质量流速及热流密度等条件下液膜蒸发过程的热质传递规律,以气液相浓度边界层内的组分质量差作为气液相传质阻力的表征,界面温度和主流饱和温度之差为传热阻力的表征,深入分析了传热阻力、传质阻力与混合工质传热特性之间的内在联系.  相似文献   

7.
为了提高电子器件的冷却效率,研究了不导电介质FC-72在表面加工有方柱微结构的模拟芯片上的流动沸腾强化换热性能.采用了两种方柱微结构,其边长均为30μm,但高度分别为60μm和120 μm.方柱微结构芯片与光滑芯片相比显示出较好的强化沸腾换热效果,且增加方柱高度可有效提高流动沸腾强化换热性能.方柱微结构芯片的临界热流密度随着流速和过冷度的增大而增大,且到达临界热流密度(CHF)时芯片的表面温度低于芯片回路正常工作的上限温度85℃.  相似文献   

8.
本文实验研究了低质量流速(500~800 kg·m~(-2)·s~(-1))下的立式螺旋管临界热负荷,对沸腾传热恶化壁温特性和螺旋管临界热负荷影响因素进行分析.并同前人工作汇总,以流量,压力和临界干度为参数,建立了基于局部条件假设的立式螺旋管临界热负荷查询表(Look-Up-Table),共272个点.压力范围6.5~21 MPa,质量流速范围500~1800 kg·m~(-2)·s~(-1).  相似文献   

9.
对于沸腾换热,一个主要的约束条件就是临界热流密度(Critical Heat Flux,简称CHF)。这个约束条件对沸腾换热量有一个最高值的限制。文中对矩形微槽道中的流动沸腾临界热流密度进行了实验研究。实验数据是在不同尺寸(0.15mm;0.4mm;1mm)微槽道中,在较大范围的面积质量流速和不同进口过冷度下,以去离子水为工质得到的。实验过程中发现,达到CHF时,靠近出口壁面温度会突然升高,此时传热效率迅速下降。实验数据分析结果表明:CHF随质量流量的增加而增加;进口过冷度对CHF没有明显影响;CHF随着出口干度的增加而降低。  相似文献   

10.
螺旋管内高压汽水两相流动沸腾干涸点的研究   总被引:1,自引:0,他引:1  
在较宽的实验参数范围内(系统压力P=8~15 MPa,质量流速G=800~1800 kg·m~(-2)·s~(-1),壁面热流密度q_w=200~950 kW·m~(-2))对一立式螺旋管内(管内径为10 mm,螺旋直径为300 mm,节距为50 mm)汽水两相流动沸腾干涸特性进行了实验研究。通过研究,获得了干涸发生时螺旋管圈壁温的分布特征以及压力、质量流速和壁面热流密度这三个参数对临界干度的影响规律。同时在实验数据的基础上,提出了一个适用于计算螺旋管内高压高含汽率工况下汽水两相流临界干度的经验关系式。  相似文献   

11.
本文试验研究了10~15 MW/m2高热流条件下过冷水流动沸腾的临界热流密度(CHF),并聚焦其预测方法。分析了热力学干度、质量流速和压力等参数对过冷沸腾CHF的影响。结果表明,随着热力学干度的增加,CHF近似线性降低。CHF随着质量流速增加而增加,但当靠近饱和点时,增加趋势逐渐减弱。在本文试验数据的基础上,搜集了文献中公开的实验数据,构建了高热流过冷沸腾CHF数据集(共709组),采用经验关联式和神经网络模型两种方法进行了预测,并定量评估了7个经验关联式和3个神经网络模型(BP,GA-BP和MEA-BP)的预测性能。结果显示,神经网络算法的预测性能相较于传统关联式有显著提升,其中,MEA-BP神经网络的预测效果最优,其平均绝对误差为15.61%,均方根误差为21.56%。  相似文献   

12.
分叉管道常见于工程上的流量分配装置、飞行器内外涵道结构,其中分流流道的流动结构影响着主流道的通流量,且回流涡的产生与扩大会引起分流流道的阻塞,使之失去分流的作用。本文采用高速摄影对分流流道内部的流动结构进行识别,发现在其入口处存在明显的回流涡,进而对回流涡处壁面进行了压力动态测量。压力动态测试与高速摄影的结果显示出分流通道中回流涡流场变化的频率信息。在不同的管道入口雷诺数(Re_(in)=80249到179414)下,回流涡处的壁面压力变化具有混沌特性,随着入口雷诺数的增加,压力脉动的幅值增大,而随机性却减小,确定性和稳定性增强,且在回流涡产生位置尤为显著,影响整个分流流道的通流能力。  相似文献   

13.
在低质量流速和高热流密度下,对复杂结构微流体芯片中的流动沸腾进行了瞬态流型研究,发现了毫秒级微时间尺度的周期性流型和微通道中的分层流.在单个微通道区域,液膜沿流动方向逐渐增厚且蒸干总是首先发生在其上游区域,而在不同微通道区域间,下游微通道首先蒸干.分析表明,液相弗劳德数(Froude number)较低是微通道中分层流存在的原因.高沸腾数(Boiling number)引起汽液界面较大的剪切应力从而使液体不断向微通道出口处聚集,引起液膜厚度沿流动方向逐渐增厚.  相似文献   

14.
选取掺钕四氟化钆钠(Nd3+:NaGdF4)纳米晶分散到二甲基亚砜作为"绿色"液体介质,构建单侧抽运和液体横流系统,使用ANSYS软件对液体介质稳定热流场分布进行模拟分析。结果表明:当流道形状、流动状态、壁面相同时,液体流场分布基本相同,泵浦光的频率对流场分布影响很小;液体介质入口的流速会影响流线分布,流速越快,流线越密;泵浦区域中,介质沿着液体流动方向温度逐渐升高;在液体流向变化小的区域,可获得较为均匀的温度分布。  相似文献   

15.
选取掺钕四氟化钆钠(Nd3+:NaGdF4)纳米晶分散到二甲基亚砜作为"绿色"液体介质,构建单侧抽运和液体横流系统,使用ANSYS软件对液体介质稳定热流场分布进行模拟分析。结果表明:当流道形状、流动状态、壁面相同时,液体流场分布基本相同,泵浦光的频率对流场分布影响很小;液体介质入口的流速会影响流线分布,流速越快,流线越密;泵浦区域中,介质沿着液体流动方向温度逐渐升高;在液体流向变化小的区域,可获得较为均匀的温度分布。  相似文献   

16.
超临界流体广泛应用于工程技术领域,其流动传热特性对工程设计具有重要意义,但是,由于超临界流体的物理微观和宏观行为的机理尚不清晰,所以其异常的流动传热特性并未得到很好的解决.普遍认为超临界流体在分子尺度上可分为类气和类液两种不同的特性,直到最近通过实验在宏观上监测到超临界水类液和类气之间的转变,且这一过程与拟沸腾理论一致,使得问题逐渐变得清晰.本文基于拟沸腾理论对超临界CO2异常流动传热行为进行了研究,在假设类液和类气转换过程不均匀的情况下,从经典的量纲分析和亚临界过冷沸腾理论模型出发,提出了一个适用于超临界流体拟沸腾换热过程的分析方法.通过引入表征类气膜生长速度与流体主流平均流速之比π=(qw·ρ1)/(G·Δi·ρg)和表征近壁区类气膜温度梯度π13=(qw·βpc·di)/λg两个无量纲数,来表征拟沸腾如何导致传热恶化,解释了超临界CO2竖直向上加热流动过程中的异常换热特性,即较大的类气膜生长速度使近壁区快速聚集了较多的高温流体,而较大的类气膜温度梯度使类气膜覆盖在壁面.当核心的冷类液不能充分润湿热壁面时,传热恶化.新无量纲数较好的诠释了超临界流体拟沸腾诱导传热恶化机制,为超临界拟沸腾传热研究提供了理论依据.  相似文献   

17.
针对开架式气化器(ORV)建立4组不同海水液膜厚度下的换热管模型,基于Realizable k-ε及SolidificationMelting模型进行流固耦合传热计算,分析不同海水液膜厚度以及不同海水入口流速对换热管外海水结冰的影响。海水入口流速在0.5m/s~1m/s范围内变化时,海水入口流速越小,液膜厚度越薄,换热管外海水越易结冰;当液膜厚度为1mm、海水入口流速为0.5m/s时,结冰长度达到454mm。可见,换热管外海水结冰受液膜厚度与海水入口流速影响很大。海水从上往下流动过程中,换热管外海水结冰率逐渐增大,冰层逐渐增厚,且结冰重点区域位于换热管翅片缝隙及换热管连接处。因此在ORV实际运行中,为防止换热管结冰,应合理布置海水分布装置,并对换热管外翅片夹角、形状及换热管连接结构进行优化设计,以增强ORV传热效果。  相似文献   

18.
张森  娄钦 《物理学报》2024,(2):226-238
采用耦合电场模型的相变格子Boltzmann模型,数值研究了电场作用下锥翅结构表面的饱和池沸腾换热.为了定量分析电场对锥翅结构表面沸腾换热影响的机理,首先在无电场作用下对比调查了平滑表面和锥翅表面的沸腾换热现象.发现锥翅结构在核态沸腾阶段有更多的成核点,沸腾换热性能增强,临界热流密度(critical heat flux,CHF)提高.而在过渡沸腾阶段以及膜态沸腾阶段,由于锥翅结构增加了锥翅表面流体的流动阻力,阻碍了气液交换,换热性能低于平滑表面.基于以上发现,通过对锥翅表面池沸腾过程施加电场,进一步强化了锥翅表面沸腾换热.结果表明,在起始核态沸腾阶段,电场的存在稍微延后了气泡开始成核时间,气泡尺寸减小,沸腾轻微被抑制;充分核态沸腾阶段,由于电场力的作用以及电场与锥翅结构协同表现出的尖端效应,阻止了加热表面干斑的扩散和蔓延,促进沸腾换热;过渡沸腾以及膜态沸腾阶段,尖端效应更加明显,逐渐增大的电场强度使沸腾在更高过热度下处于核态沸腾状态,沸腾换热性能大幅度提高,且CHF逐渐提高.  相似文献   

19.
由于考虑了气泡的破裂和聚合,同两流体模型相比,MUSIG模型(多尺寸组模型)能更准确地描述流场内气泡直径。采用MUSIG模型详细分析了不同壁面热流量,液体入口速度,过冷度以及不同管道高度时通道内气泡相界面面积、当地气泡直径、空泡系数等参数沿径向的分布。分析结果表明,MUSIG模型可用来预测泡弹状流型转变区的流动参数,也即该模型拓展了两流体模型的使用范围。  相似文献   

20.
《工程热物理学报》2021,42(7):1827-1831
本文基于Simulink仿真和高速显微摄像仪设计搭建了一套闭式泵驱两相流回路系统,该系统具有可视化观测和自动控制小通道蒸发器流动沸腾传热过程。开展了小通道蒸发器内流型演变、传热特性和温度动态变化调控的定量研究,重点关注流型、流量、热负荷之间的耦合关系。研究结果表明,所构建的两相流回路系统借助储液罐控温调节能够实现系统运行参数的快速准确调控。小通道内工质流动沸腾呈现出单相流、泡状流、弹状流、搅拌流、环状流和反环状流等流型。对流传热系数随着热负荷增大经历单相流与两相流共存的急剧上升阶段、全区域两相流稳定区的均匀缓慢上升阶段以及处于临界不稳定换热区附近的下降阶段。并且,所采用的自动热控制算法能够实现流量、过冷度、壁温等运行参数的快速准确调控,赋予了泵驱两相流回路系统良好的热管理性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号