首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
近期在广州荔湾珠宝市场出现一种具黄、黑条带的玉石品种,因其花纹形如黄蜂,商家称之为“黄蜂石”。“黄蜂石”的条纹状结构与缟玛瑙的条带状纹理非常相似,容易混淆。对“黄蜂石”进行显微岩相学、X射线粉晶衍射、电子探针、红外吸收光谱及拉曼光谱等分析,旨在探求其基本物理性质、矿物组成,以及谱学特征。结果显示:“黄蜂石”以灰白、黄橙、黑色为主,莫氏硬度3~5,相对密度2.58~2.73,长波紫外光下具弱黄色荧光,与稀盐酸反应起泡。显微岩相学分析显示,“黄蜂石”基质为方解石,呈不规则粒状,粒径0.02~0.3 mm,粒状、纤维状结构。“黄蜂石”中CaO的含量约为53.64%~56.66%,FeO的含量约为2.23%~3.62%,MgO的含量约为1.05%~1.79%,部分测试点中出现As和S元素。样品中Mg/Ca摩尔百分比为2.59%~4.68%,为低镁方解石。红外吸收光谱分析显示,“黄蜂石”的红外光谱特征吸收峰与碳酸盐类矿物理论值一致,为1 514,1 427,881和710 cm-1,由[CO3]2-不对称伸缩振动、面内弯曲振动以及面外弯曲振动导致;黑色矿物中存在黄铁矿的特征峰1 123,1 050,423,1 123和1 050 cm-1为S-S伸缩振动,423 cm-1为Fe2+-[S2]2-伸缩振动。拉曼光谱分析显示,样品的黄色部分中除具方解石的拉曼位移1 083,713,282和157 cm-1外,还有副雄黄的拉曼峰346,233和184 cm-1;橙红色部分显示雄黄的拉曼特征峰338,221及184 cm-1,338 cm-1由S-As-S伸缩振动所致,221 cm-1属于S-As-S弯曲振动结合As-S伸缩振动产生,184 cm-1与As-As伸缩振动相匹配。X射线粉晶衍射分析结果与红外吸收光谱、拉曼光谱等测试结果一致,即“黄蜂石”的主要矿物是方解石,次要矿物为黄铁矿、雄黄及副雄黄等,根据国家标准可定名为“碳酸盐质玉”。  相似文献   

2.
老挝水洞桃花石因与寿山石中的著名品种高山桃花石外观质地相似而受到关注。运用宝石显微镜、 X射线粉晶衍射(XRD)、红外光谱(FTIR)和拉曼光谱(LRM)等测试方法对老挝水洞桃花石样品的矿物组成、红外光谱特征、拉曼光谱特征、杂质矿物成分以及颜色成因进行了研究,并与高山桃花石的特征对比可知:老挝水洞桃花石的主要矿物组成为结晶度中等的地开石与高岭石的过渡矿物或结晶度较高的地开石,个别样品还含有石英。老挝水洞桃花石在官能团区的三个红外特征吸收峰位于3 697, 3 653和3 621 cm~(-1)处,与羟基的伸缩振动有关,其矿物成分为无序地开石-高岭石过渡矿物。高山桃花石样品的红外光谱存在3 702, 3 653和3 621 cm~(-1)三个特征吸收峰,吸收峰的位置及强度表明其基质部分的矿物组成为有序地开石。老挝水洞桃花石和高山桃花石样品在指纹区的红外光谱特征基本一致,均显示1 106, 1 034和1 006 cm~(-1)处Si—O和Al—O—H的伸缩振动吸收峰; 937和913 cm~(-1)处Al—O—H弯曲振动吸收峰, 695和538 cm~(-1)处Si—O—Al伸缩振动吸收峰; 471和430 cm~(-1)处Si—O弯曲振动吸收峰。老挝水洞桃花石样品基质部分的拉曼光谱中, 200~1 000 cm~(-1)范围内202和273 cm~(-1)处拉曼峰归属于O—H—O伸缩振动, 341 cm~(-1)拉曼峰归属于Si—O振动, 439和468 cm~(-1)处拉曼峰归属于Si—O弯曲振动, 754和800 cm~(-1)处拉曼峰归属于Al—O—Si的弯曲振动, 921 cm~(-1)处拉曼峰归属于OH弯曲振动。3 550~3 750 cm~(-1)范围内OH振动区通常显示与红外光谱高频区相似的三个谱峰。老挝水洞桃花石和高山桃花石中"桃花"内含物均为赤铁矿,特征拉曼峰位于225, 296, 411和1 318 cm~(-1)处,高山桃花石中还存在锐钛矿,特征拉曼峰出现在145和639 cm~(-1)处。结合显微放大观察和电子探针成分分析的结果可知,老挝水洞桃花石和高山桃花石都为杂质矿物致色,内部密集的微晶赤铁矿包裹体使之呈现红色。  相似文献   

3.
“黑碧”指颜色为黑色,主要成分为阳起石的碧玉。电子探针、激光剥蚀电感耦合等离子体质谱仪分析显示“黑碧”为阳起石碧玉。拉曼光谱和红外光谱的OH振动处产生3个主峰,归属于MgMgMg-OH,MgMgFe2+-OH(Fe2+M1MgM1MgM3-OH,MgM1MgM1Fe2+M3-OH),MgFe2+Fe2+-OH(MgM1Fe2+ M1Fe2+M3-OH,Fe2+M1Fe2+M1MgM3-OH),但与常见和田玉不同,“黑碧”的三个主峰在拉曼光谱OH的振动区(3 600~3 700 cm-1)和红外光谱OH的倍频振动区(7 200~7 100 cm-1)产生分裂现象。将“黑碧”分为5个区域:HB-1,HB-2,HB-3,HB-4和HB-5,进行原位的电子探针和拉曼光谱分析,拉曼光谱在3 600~3 700 cm-1出现3个主峰(A,B,C),将主峰进行分峰拟合处理,显示分裂成6个次级峰(A′和A″,B′和B″,C′和C″),次级峰之间的平均波数差为5 cm-1。前人对角闪石在OH振动处主峰分裂现象的观点各不相同。结合“黑碧”的原位电子探针数据和相关研究文献,认为角闪石中B(M4)位置上的阳离子分布是分裂谱产生的主要原因。角闪石中的B(M4)位置虽然没有直接与W位置的OH相连接,但B(M4)位置上的阳离子通过影响TO4上的桥氧,间接影响W位置上的OH,从而引起OH振动光谱产生一定变化。对比存在类似分裂谱的角闪石样品和“黑碧”的晶体化学式,发现所有的样品在B(M4)位置上均存在Ca2+和Mn2+分布,而其他位置的阳离子占位情况都不相同,表明“黑碧”OH振动光谱产生分裂与B(M4)位置上的Ca2+和Mn2+分布有关。故认为“黑碧”中OH振动光谱产生分裂原因为Ca2+和Mn2+在B(M4)位置上的占位,且高波数峰位归属于Ca2+,低波数峰位归属于Mn2+,即A′,B,C′归属于Ca2+,A″,B″,C″归属于Mn2+。  相似文献   

4.
对中国寿山田黄石进行了X射线粉晶衍射(XRD)、红外光谱和拉曼光谱测试, 以获得田黄的谱学特征。研究表明田黄有地开石质、珍珠陶石质和伊利石质三类,其红外特征吸收峰分别为3 621,3 629和3 631 cm-1,拉曼特征峰分别为3 626,3 627和3 632 cm-1,3 550~3 750 cm-1间OH振动所致拉曼谱峰与红外结果一致。地开石质田黄含无序、有序两类,无序地开石OH3振动吸收峰相对有序地开石向低波数方向移动8 cm-1,相对强度增强,无序结构可能与高含量的Fe有关。3 550~3 750 cm-1间地开石OH振动红外吸收峰强于珍珠陶石,表现为珍珠陶石质田黄的红外光谱明显叠加有副矿物地开石的强吸收峰。伊利石质田黄主要为2M1型伊利石,并含有少量1M型伊利石。这些特征为科学鉴定田黄提供了理论依据。  相似文献   

5.
溪蛋石是寿山石的著名品种之一,指散落在月洋溪中的一种山坑石,系寿山石中的芙蓉石品种的风化产物。残块经过雨水冲刷流入溪中,复受水流、河沙等长年冲击,形成浑圆卵石状外表,因其易于雕刻塑形,广受近代雕刻家好评。为了探究寿山溪蛋石的矿物学和谱学特征,运用常规的宝石学测试方法、X射线粉末衍射仪、傅里叶变换红外光谱仪、显微激光拉曼光谱仪和电子探针等测试方法,对几件黄色溪蛋石样品的矿物组成、红外及拉曼光谱特征、化学成分等展开了全面研究。常规宝石学测试结果表明,溪蛋石样品的相对密度约为2.8,摩式硬度小于3;为了避免层状硅酸盐矿物的择优取向性,XRD实验采用侧压法,测试结果表明,溪蛋石由较纯的叶蜡石组成,并以单斜晶系(2M型)叶蜡石的形式存在,以2θ=19°~22°之间4.44Å(020),4.24Å(12)和4.17Å(111)三个衍射峰为特征,其中(12)和(111)两个衍射峰相距很近,在(12)衍射峰(2θ=21.06°)右侧出现了一个衍射肩;在2θ=28°~31°之间,以3.06Å(003)强峰(2θ=29.05°)为特征;采用红外光谱仪可以有效的确定溪蛋石基质和石皮部分的矿物成分。样品的红外光谱表明,溪蛋石的风化皮与基质部分矿物成分均为叶蜡石,指纹区的主要特征峰为1 122,1 068,1 052,949,853,835,812,541和484 cm-1,其中,1 122 cm-1归属于Si-O伸缩振动,1 068和1 052 cm-1附近强而尖锐的吸收峰由简并解除的Si-O-Si伸缩振动引起,949 cm-1左右的吸收窄带由Al-OH面内弯曲振动引起;853,835及812 cm-1处强度较弱的倒“山”字形吸收谱带属于Al-OH面外弯曲振动,541 cm-1处吸收峰为Si-O-Al伸缩振动引起,484 cm-1归属于Si-O弯曲振动;官能团区3 675 cm-1处尖锐的吸收峰由Al-OH伸缩振动所导致,指示了叶蜡石结构的高度有序化。采用显微激光拉曼光谱对溪蛋石中的包裹体进行测试,以确认其矿物成分。结果显示,点片状黑色包裹体为赤铁矿,拉曼特征峰为224,291,409,494以及1 315 cm-1,灰白色矿物为硬水铝石,拉曼特征峰出现在448,499和667 cm-1,还存在707,788和1 194 cm-1处弱峰,与硬水铝石的标准谱峰吻合。此外,基质部分在111,194和261 cm-1处的拉曼峰由Si-O键伸缩振动所致,706 cm-1处强而尖锐的拉曼峰以及3 670 cm-1处的峰是由O-H伸缩振动所致,与叶蜡石的拉曼光谱一致,也与红外光谱的测试结果对应。根据矿物单位分子中的电价平衡原则和正电荷总数,利用电子探针测试数据计算溪蛋石的平均晶体结构化学式为:(Al1.98Na0.02Cr0.01)[(Si3.98Al0.02)O10](OH)2。溪蛋石化学成分稳定,主要含有Si(64.88%),Al(27.55%)。寿山溪蛋石中含0.2%左右的Cr和0.02%左右的Fe和Cr元素含量远大于Fe元素,因此推测溪蛋石的浅黄色由Cr和Fe离子共同作用所致。  相似文献   

6.
“黑青”指颜色近黑色,主要成分为透闪石的青玉。“黑碧”指颜色近黑色,主要成分为阳起石的碧玉。采用电子探针、激光剥蚀电感耦合等离子体质谱仪和红外光谱测试分析手段,确定“黑青”“黑碧”的矿物种属。采用拉曼光谱、显微紫外-可见分光光度计、红外光谱对“黑青”“黑碧”的谱学鉴别特征进行探究。“黑青”为标准透闪石拉曼谱峰,“黑碧”的谱峰位置与“黑青”存在几个波数的偏差,向波数小的方向移动。可见-近红外波段,“黑青”出现445 nm吸收峰,680和940 nm宽吸收带,为Fe2+和Fe3+作用;“黑碧”出现445 nm吸收峰,660和690 nm双吸收峰以及970 nm吸收峰,为Fe2+,Fe3+,Cr3+作用。显微紫外-可见光谱可分析到样品的近红外区,“黑青”在1 397,2 310,2 387和2 466 nm出现强吸收峰,1 915和2 120 nm出现弱吸收峰;“黑碧”在1 400,2 313和2 394 nm出现吸收峰。红外光谱分析“黑青”在5 225,4 738,4 692,5 349,4 317,4 190和4 064 cm-1存在吸收峰;“黑碧”在4 708,4 307,4 178和4 031 cm-1存在吸收峰。显微紫外-可见光谱与红外光谱分析结果虽然存在小的差异,但基本保持一致,以红外光谱分析结果为准。将透闪石质的“黑青”、阳起石质的“黑碧”、广西大化阳起石质玉进行对比,综合红外光谱和显微紫外-可见光谱分析结果得出“黑青”(透闪石)与“黑碧”(阳起石)近红外光谱的鉴别特征:“黑青”(透闪石)在4 800~4 600 cm-1存在两个吸收峰,4 350~4 300 cm-1存在分裂双吸收峰;“黑碧”(阳起石)在4 800~4 600 cm-1存在一个弱吸收峰,4 350~4 300 cm-1存在一个吸收单峰。且“黑碧”(阳起石)的近红外吸收峰相较于“黑青”(透闪石)整体向低波数方向移动。  相似文献   

7.
石英质玉分布广泛,在我国十几个省区均有产出,是国内市场上重要的特色玉石品种,其使用历史悠久,是岭南先秦时期重要的玉石材料。石英质玉石的产地区分具有重要的宝石学和考古学意义。然而,由于石英质玉产地众多,外观、成分特征相似,尚缺乏有效的产地判别方法,其产地来源标型特征的研究仍然非常薄弱。"台山玉"是产于广东台山的一种石英质玉石,因其颜色质感酷似田黄而日益受到重视。该研究在常规的宝石学测试基础上,采用X射线粉末衍射(XRD)、傅里叶变换红外光谱(FTIR)、显微激光拉曼光谱(Raman)等分析方法,对6件具有代表性不同类型的台山玉的谱学特征及矿物组成进行了测试分析。实验结果显示,台山玉主要矿物为石英,次要矿物为地开石或高岭石;地开石、高岭石在台山玉中以其中一种为主,二者不共存;利用XRD-Rietveld法定量计算出台山玉中石英含量低于85 Wt%,高岭石族矿物含量介于17 Wt%~36 Wt%。台山玉的拉曼光谱缺失斜硅石的502 cm^-1特征峰,暗示了台山玉的主要矿物石英与玉髓、玛瑙类低温石英相比具有较高的结晶度;台山玉可分为地开石石英岩玉和高岭石石英岩玉两种类型,其中地开石型石英质台山玉红外光谱羟基振动区出现3 622, 3 653和3 703 cm^-1三个谱带,而拉曼光谱相应地出现3 622, 3 644和3 706 cm^-1三个谱带,二者均有谱带分裂明显,峰强向高频方向递减的特点,台山玉多为此类型;高岭石型台山玉红外光谱羟基振动区出现3 620, 3 652, 3 670和3 695 cm^-1四个谱带,而拉曼光谱出现3 620, 3 651, 3 670和3 687 cm^-1四个谱带,其中3 670 cm^-1带强度很弱,不易识别,该类型台山玉比例相对较少。台山玉中高有序度地开石、高岭石的出现指示其原岩中富Al质矿物经历了中温酸性热液交代蚀变作用,成矿条件与黄龙玉、金丝玉、霍山玉等石英岩玉存在差异。可以确定,地开石、高岭石是台山玉区别于其他产地石英岩玉的标型矿物。结果为台山玉的产地鉴定提供了科学依据,并为国内石英质玉的源区鉴定和古代石英质玉器的产地溯源提供了重要的参考。  相似文献   

8.
国际珠宝交易市场上最近出现了一批价值不菲的无色透明的宝石级钠沸石刻面成品,为提供快速区分其与仿制品材料的依据,文章通过红外光谱和拉曼光谱对三颗钠沸石样品的振动光谱进行了研究。结果表明, 其红外光谱主要表现为:4 000~1 200 cm-1的吸收峰是结构中水导致的吸收;1 200~600 cm-1 的强吸收与TO4四面体的内部T—O(T为Si或Al)的反对称和对称伸缩振动有关。拉曼光谱散射峰主要分布在300~600和700~1 200 cm-1两个区间。300~360 cm-1处较弱强度的拉曼散射峰是由于结构中水分子所导致。482 cm-1处中等强度的峰归属于硅氧四面体内部由于变形导致的拉曼位移。726 cm-1处的拉曼散射峰归属于Al—O的伸缩振动;974,1 038,1 084 cm-1的三处拉曼散射峰都是Si—O的伸缩振动导致的拉曼位移。  相似文献   

9.
运用傅里叶变换红外光谱仪对常见宝石、玉石、有机宝石的近红外光谱进行分析研究以及谱峰归属。宝石的近红外光谱表明,宝石矿物中广泛存在不同类型水的合频、倍频吸收峰,也可出现能量较低的电子跃迁吸收峰,其中水分子组合频吸收峰位于5 200 cm-1±,OH的倍频吸收峰位于7 000 cm-1±,以5 898 cm-1±和7 849 cm-1±为中心的强宽吸收谱带为能量较低的电子跃迁吸收峰,并且当只有7 000 cm-1±出现时表明水以—OH的形式存在于宝石中,当5 200和7 000 cm-1±吸收峰同时存在则表明宝石矿物中水的存在形式既有水分子也有—OH。而有机宝石近红外光谱以7 000 cm-1± NH伸缩振动的一级倍频和5 200 cm-1± NH伸缩振动与酰胺Ⅱ的组合频为特征。但是,近红外光谱吸收峰的峰位、峰型、相对强度因有机宝石的品种不同而有所区别。苯环中CH的伸缩振动与弯曲振动组合频吸收峰(4 061和4 179 cm-1±)、CH伸缩振动与苯环骨架振动的组合频吸收峰(4 621和4 683 cm-1±)为经过有机物充填处理的宝玉石的特征谱峰,其中,与苯环有关的吸收峰,表示样品经过充填处理,指示样品中环氧树脂的存在。  相似文献   

10.
在金刚石压腔中,运用激光拉曼光谱技术对高压下蛇纹石矿物结构及其稳定性进行了原位观测与研究。实验获得蛇纹石在常温下从0.1~5 140MPa的拉曼光谱数据。研究发现,蛇纹石低频拉曼谱峰388,471,692和705cm-1随压力增加有规律地向高频偏移;层内羟基3 664cm-1峰和层间羟基3 696cm-1峰与压力呈明显的正相关性。层内羟基3 664cm-1峰随压力变化的斜率为3.3cm-1.GPa-1,层间羟基3 696cm-1峰在2.0GPa时斜率由8.3cm-1.GPa-1变为1.1cm-1.GPa cm-1。在实验温压条件下,蛇纹石未发生脱水作用。  相似文献   

11.
云南龙陵黄龙玉的振动光谱及XRD光谱表征   总被引:1,自引:0,他引:1  
黄龙玉是云南省龙陵县近年发现的新玉石品种,在国内市场热度较高。目前对其矿物组成和光谱特征还未有报道。在常规的宝石学测试基础上,重点采用激光拉曼光谱仪、红外光谱仪和X射线粉晶衍射(XRD)分析方法,对其振动光谱特征和矿物组成进行了细致的研究。结果表明,黄龙玉显示典型的石英质玉石的振动光谱特征,主要红外吸收谱带位于1 162,1 076,800,779,691,530和466 cm-1处,分别属于Si—O—Si非对称伸缩振动、Si—O—Si对称伸缩振动、Si—O—Si弯曲振动。其中在800 cm-1附近谱带有分裂,表明黄龙玉结晶程度较好。拉曼光谱中,归属Si—O—Si弯曲振动的谱带强度较高,主要拉曼散射峰为463和355 cm-1。XRD结果证实,其矿物组成为较纯的石英,红色样品中还含有微量的赤铁矿,是其产生红色的原因。这是首次系统研究黄龙玉的红外光谱、拉曼光谱及XRD谱学特征,为其鉴定、定名及后续的研究提供科学依据。  相似文献   

12.
实验测量了木糖醇的拉曼光谱和红外光谱,在相关文献的帮助下,对其谱带进行了初步指认。在拉曼光谱中,1000cm-1~1110cm-1之间的中等强度振动属于C-O伸缩振动和H-C-O弯曲振动。850cm-1到920cm-1之间的振动属于C-C伸缩振动。羟基面内弯曲振动在红外吸收光谱中出现在1300~1500cm-1,O-H的变形振动δO-H出现在1420~1380cm-1。  相似文献   

13.
绿松石的激光拉曼光谱研究   总被引:1,自引:0,他引:1  
对湖北、安徽地区绿松石进行了激光拉曼光谱测试分析。结果表明,绿松石中H2O,OH-及PO3-4的基团振动是导致其激光拉曼光谱形成的主要原因。3 510~3 440 cm-1的谱峰是由ν(OH)伸缩振动所致,其中ν(OH)振动导致的强拉曼特征谱峰在3 470 cm-1附近,ν(H2O)伸缩振动致拉曼谱峰位于3 290~3 070 cm-1附近的较为宽缓的弱谱峰处;由ν3(PO4)伸缩振动致强拉曼特征谱峰在1 200~1 030 cm-1之间,其中ν3(PO4)振动导致的强拉曼特征谱峰在1 039 cm-1附近,ν4(PO4)弯曲振动位于650~540 cm-1范围,ν2(PO4)的弯曲振动谱峰位于500~410 cm-1处;不同产地、不同结晶类型的绿松石表现出的拉曼谱峰特征基本一致。  相似文献   

14.
为了分析云南楚雄新发现粘土矿中主要矿物组成,确定其主要矿物是否是凹凸棒石粘土,对其五种样品进行了红外光谱与X射线荧光光谱的测试与研究。结果发现,3 437 cm-1处的吸收带是凹凸棒石粘土中的结晶水的羟基振动引起的,3 621和3 651 cm-1处的吸收带是与凹凸棒石粘土孔道边缘的Mg, Al八面体相连的结构水的羟基的对称和不对称伸缩振动产生的;3 699 cm-1处的吸收峰是与结构内部的四面体结构和八面体之间的Mg,Al相连羟基的伸缩振动;1 633 cm-1处的吸收峰是结构水与吸收水羟基弯曲振动的吸收峰;1 010 cm-1处的吸收带是共价键Si-O-Al的Si-O键的特征峰,913 cm-1处的吸收带是二八面体的羟基(Al2OH)的变形振动的特征吸收峰。表明:粘土矿的五种样品均含有较高凹凸棒石粘土成分;三种黑色样品的中红外光谱与谱库中凹凸棒石粘土谱图比对的相似度在93%以上,三种黑色样品含凹凸棒石粘土成分很高,五种粘土矿样品的主要矿物均是分子式为Al5Si8O20(OH2)4·4H2O的凹凸棒石粘土粘土矿样品的凹凸棒粘土的。  相似文献   

15.
近年来大量的墨玉在国内外玉石市场上陆续出现,广西大化墨玉是最新发现的墨玉新品种。为了探究广西大化墨玉的矿物学及谱学特征,针对产自广西大化瑶族自治县的墨玉样品进行了常规检测,以及采用X射线粉末衍射仪、激光拉曼光谱仪、傅里叶红外变换光谱仪和激光剥蚀等离子体质谱仪等现代谱学仪器测试分析,从矿物组成、拉曼光谱和红外光谱以及化学元素组成进行了研究分析。常规宝石学特征测试显示广西大化墨玉的折射率为1.64(点测),比重为3.12。偏光显微镜观察显示广西大化墨玉的主要矿物为阳起石,含量大于98%,结构为显微毛毡状结构。XRD测试明确样品主要成分为阳起石,其特征面网间距为8.498 3和3.145 9 。傅里叶红外变换光谱仪测试结果显示样品的红外光谱与透闪石理论值接近,主要的特征峰为1 078,1 026,925,765,703,659,584,485,436 cm-1,其中1 078,1 026,925 cm-1为O-Si-O和Si-O-Si的反对称伸缩振动及O-Si-O对称伸缩振动,765,703,659 cm-1为Si-O-Si对称伸缩振动,584,485,436 cm-1为Si-O弯曲振动。激光拉曼光谱测试测试结果显示样品的图谱基本集中在3 500~3 800和119~1 054 cm-1这两个区域内,样品的拉曼光谱119~1 054 cm-1的特征峰中1 055,1 029和930 cm-1为闪石类矿物特征的Si-O伸缩振动,744和671 cm-1为Si-O-Si伸缩振动,且在671 cm-1是强度最大的特征峰位,代表硅氧四面体结构单元中桥氧的对称伸缩振动;在3 800~3 500 cm-1区间为M-OH伸缩振动区域,反映了M1和M3位置的阳离子与结构中的OH-成键的振动信息,位于3 628,3647,3 664,3 678 cm-1,这是由于OH-伸缩振动导致。通过激光剥蚀质谱仪测试分析发现样品的主要化学成分为SiO2(52.4%),FeO(21.95%),CaO(12.5%)和MgO(12.4%)。此外还含有少量Al2O3,MnO,Na2O,P2O5,K2O和TiO2,由于样品富含Fe元素,计算Mg/(Mg+Fe)=0.504,因此大化墨玉为软玉中的阳起石玉,并由此推断大化墨玉的黑色由含铁量较高所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号