首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
利用共沉淀法制备了非晶和纳米ZrO2 和ZrO2 ∶Y(7% )。通过X射线衍射对其晶化过程的结构变化进行了表征 ,并在不同温度和气氛下进行处理 ,研究了对其发光性质的影响。结果表明发射谱由一个Gaus sian带 (峰值 2 6 9eV)和一个非对称带 (峰值 3 12eV)构成 ,它们对应的发光中心分别为F+ 心和 (F F) + 心。非晶样品的发光强度比纳米晶样品强 ,发光强度主要受氧空位的浓度和晶粒尺寸的影响 ,随着处理温度的升高 ,两者竞争的结果综合地影响了发光强度  相似文献   

2.
纳米晶ZrO2:Eu3+的制备及发光性质   总被引:8,自引:5,他引:3  
利用共沉淀法制备了纳米晶ZrO2:Eu^3 发光粉体。室温下观测到Eu^3 离子的强特征发射,主发射分别在590,604nm处。观测到Eu^3 离子电荷迁移态,并与其他研究系统观测到的Eu^3 离子电荷迁移态基本相同。比较了不同掺杂比例和不同煅烧温度对Eu^3 离子特征发射的影响。其他条件相同掺杂比例不同时,当n(Eu^3 ):n(Zr^4 )为6%样品发射相对最强。而当掺杂比例相同改变煅烧温度时,600℃煅烧的样品发光较强。分析了Eu^3 离子对ZrO2晶相的稳定作用。铕掺杂的纳米晶二氧化锆样品,随着样品煅烧温度的升高,样品的晶相结构只发生了细微变化。而纯纳米晶二氧化锆在煅烧温度升高时晶相发生了明显的变化。说明Eu^3 离子起到了稳定ZrO2基质晶相的作用。研究发现二氧化锆掺铕样品有较高的浓度猝灭,发射较强且色纯度较好。  相似文献   

3.
纳米晶ZrO2:Pr^3+与ZrO2:Pr^3+,Sm^3+发光研究   总被引:10,自引:0,他引:10  
采用化学共沉淀法制备了纳米晶ZrO2:pr^3+粉体,所制备的纳米晶ZrO2:Pr^3+粉体中Pr^3+的强室温特征发射的两个主发射带为^1D2-^2H4和^3P0-^3H4跃迁。不同热处理温度下纳米晶ZrO2:Pr^3+晶体结构不同,因此它们的发光不同;ZrO2基质向Pr^3+有能量传递,在高温煅烧得到的单斜相配位场中能量传递较好。荧光强度与Pr^3+浓度的关系研究表明:^3P0和^1D2功能级有不同的猝灭规律,由于[^1D2,^3H4]→[^1G4,^3F4]的交叉弛豫,使得^1D2-^3H4跃迁的猝灭浓度很低,在我们的实验中,掺0.1mol%Pr^3+时^1D2-^3H4地跃迁发射最强,掺2mol%Pr^3+时^3R0-^3H4跃迁发射最强。文章制备的纳米晶ZrO2:Pr^3+,Sm^3+中Sm^3+的^4G(5-2)~^6H(7/2)跃迁荧光峰因Pr^3+加入而增强,这除了两种离子某些能级相近产生荧光发射的叠加效应外,还存在Pr^3+→Sm^3+的能量传递。  相似文献   

4.
纳米介孔ZrO2及其表面修饰的发光性质   总被引:5,自引:2,他引:3  
水热合成法制备的高度有序多孔ZrO2具有规则六角排列、均匀纳米孔洞(约1.8nm),并且其蓝、(近)紫外光发射强度比纳米微晶材料高2个数量级。本文研究了纳米介孔ZrO2这种不同于常规体材料与纳米晶材料的特殊发光性质。通过化学方法对纳米介孔ZrO2进行表面修饰后,能进一步提高其光发射聋度约3倍。通过这些发光性质的研究,以期增进对ZrO2发光机理的认识。  相似文献   

5.
利用甘氨酸燃烧法制备了ZnOMgO纳米复合材料,并在不同温度进行热处理.通过X射线衍射、扫描电子显微镜和傅里叶变换红外吸收谱,对其升温过程中的结构变化进行了表征,研究了热处理温度对样品室温光致发光行为的影响.结果表明,复合材料的发光性能与纯ZnO相比有很大改善,经900℃热处理的纳米复合材料,其发射谱由一个强紫外发射带(峰值385nm)构成;当热处理温度低于900℃时,发光强度随热处理温度的升高而增强,进一步将热处理温度升至1000℃时发光强度又明显降低.发光强度主要受ZnO、MgO纳米晶的粒子尺寸、结晶完善程度,尤其是受两相纳米粒子之间相互作用的影响.同时发现选择合适的甘氨酸与硝酸根离子的摩尔比,对改善样品紫外发光特性也很重要.  相似文献   

6.
纳米晶ZrO2:DY^3+的制备与发光性质研究   总被引:3,自引:1,他引:2  
利用共沉淀法制备了纳米晶ZrO2:Dy3 发光粉体,对不同掺杂浓度、不同煅烧温度的系列样品,均观测到Dy3 离子的室温强特征发射.样品的晶相与发射性质的研究表明:所制备的样品经600℃~950 ℃热处理后,晶相经历从四方相到以单斜相为主的变化;由于晶相的变化,发现有两个发光中心,分别位于四方相和单斜相.激发Dy3 的6P7/2能级,当稀土离子处在四方相(格位一)时有利于483 nm和583 nm的发射,当稀土离子处在单斜相(格位二)时有利于490 nm和577 nm的发射.基质ZrO2和Dy3 离子之间有能量传递,950℃时能量传递效果最好.荧光强度与掺Dy3 离子浓度关系表明,Dy3 在纳米晶ZrO2中的最适合掺杂浓度与ZrO2的晶相有关,四方相时,最适合掺杂浓度为0.5%,混合相时为1%.  相似文献   

7.
a-SiCx:H/nc-Si:H多层薄膜的室温时间分辨光致可见发光   总被引:1,自引:1,他引:0  
在等离子体增强化学气相沉积(PECVD)系统中,通过控制进入反应室的气体种类逐层沉积非晶SiCx:H(a-SiCx:H)和非晶Si:H(a-Si:H)薄膜,然后经过高温热退火处理,成功制备了晶化纳米a-SiCx:H/nc-Si:H(多晶SiC和纳米Si)多层薄膜。利用截面透射电子显微镜技术分析了a-SiCx:H/nc-Si:H多层薄膜的结构特性。通过对晶化样品的时间分辨光致发光谱的研究,结果表明:随着退火温度的升高,发光峰位置开始出现一些红移现象:当退火温度为900℃时,样品的发光强度和发光衰减时间分别达到最大值和最小值;随着退火温度的继续升高,发光峰位置又开始出现蓝移现象。由此探讨纳米a-SiCx:H/nc-Si:H多层薄膜的发光特性和发光机理。  相似文献   

8.
采用化学共沉淀法制备了纳米晶ZrO2∶Pr3 粉体, 所制备的纳米晶ZrO2∶Pr3 粉体中Pr3 的强室温特征发射的两个主发射带为1D2-3H4和3P0-3H4跃迁. 不同热处理温度下纳米晶ZrO2∶Pr3 晶体结构不同, 因此它们的发光不同;ZrO2基质向Pr3 有能量传递, 在高温煅烧得到的单斜相配位场中能量传递较好. 荧光强度与Pr3 浓度的关系研究表明: 3P0和1D2能级有不同的猝灭规律, 由于[1D2, 3H4]→[1G4, 3F4]的交叉弛豫, 使得1D2-3H4跃迁的猝灭浓度很低, 在我们的实验中, 掺0.1 mol% Pr3 时1D2-3H4跃迁发射最强, 掺2 mol% Pr3 时3P0-3H4跃迁发射最强. 文章制备的纳米晶ZrO2∶Pr3 , Sm3 中Sm3 的4G5/2-6H7/2跃迁荧光峰因Pr3 加入而增强, 这除了两种离子某些能级相近产生荧光发射的叠加效应外, 还存在Pr3 →Sm3 的能量传递.  相似文献   

9.
掺铒纳米晶硅和掺铒非晶纳米硅薄膜的发光性质   总被引:3,自引:1,他引:2  
采用等离子体增强化学气相沉积(PECVD)方法制备含有纳米晶硅的SiO2(NCSO)和含有非晶纳米硅颗粒的氢化非晶氧化硅(a—SiOx:H)薄膜。采用离子注入和高温退火方法将稀土Er掺入含有纳米晶硅(ncSi)和非晶纳米硅(a—n—Si)颗粒的基体中。利用IFS/20HR傅里叶变换红外光谱仪和微区拉曼散射光谱仪研究含有纳米晶硅和非晶纳米硅颗粒的薄膜掺稀土前后的发光特性。结果表明来自Be-Si在800nm的发光强度比来自a—SiOx:H基体中非晶纳米硅的发光强度高近一个数量级,而来自a-SiOx:H在1.54μm的发光强度比NCSO高4倍。还研究了掺铒a-SiOx:H薄膜中Si颗粒和Er^3+的发光强度随退火温度的变化,结合掺铒纳米晶硅和非晶纳米硅薄膜发光强度随Er掺杂浓度变化和Raman散射等的测量结果,进一步明确指出a-Si颗粒在Er^3+的激发中可以起到和nc-Si同样的作用,即作为光吸收介质和敏化剂的作用。  相似文献   

10.
周巍  吕树臣 《光子学报》2008,37(10):2018-2023
利用共沉淀法制备了纳米晶ZrO2∶Dy3+发光粉体,对不同掺杂浓度、不同煅烧温度的系列样品,均观测到Dy3+离子的室温强特征发射.样品的晶相与发射性质的研究表明:所制备的样品经600℃~950 ℃热处理后,晶相经历从四方相到以单斜相为主的变化;由于晶相的变化,发现有两个发光中心,分别位于四方相和单斜相.激发Dy3+的6P7/2能级,当稀土离子处在四方相(格位一)时有利于483 nm和583 nm的发射,当稀土离子处在单斜相(格位二)时有利于490 nm和577 nm的发射.基质ZrO2和Dy3+离子之间有能量传递,950℃时能量传递效果最好.荧光强度与掺Dy3+离子浓度关系表明,Dy3+在纳米晶ZrO2中的最适合掺杂浓度与ZrO2的晶相有关,四方相时,最适合掺杂浓度为0.5%,混合相时为1%.  相似文献   

11.
12.
 分别以丙醇锆和正硅酸乙酯为原料,采用溶胶-凝胶工艺制备了性能稳定的ZrO2和SiO2溶胶。用旋转镀膜法在K9玻璃上分别制备了单层SiO2薄膜、单层ZrO2薄膜、ZrO2/ SiO2双层膜和SiO2/ZrO2双层膜。采用原子力显微镜观察了薄膜的表面形貌,用椭偏仪测量薄膜的厚度与折射率,用紫外-可见光分光光度计测量了薄膜的透射率。对薄膜的透射光谱和椭偏仪模拟的数据进行分析,发现SiO2/ZrO2双层膜之间的渗透十分明显,而ZrO2/SiO2双层膜之间几乎不发生渗透。利用TFCalc模系设计软件,采用三层膜模型对薄膜的透射率进行模拟,得出的透射曲线与用紫外-可见光分光光度计测量的透射曲线十分符合。  相似文献   

13.
A careful study of the phosphorescence afterglow and the thermoluminescence (TL) of sol-gel-prepared m-ZrO2 nanocrystalline powders in an extended temperature range ?100 to 300 °C was carried out. Wavelength-resolved TL proved the existence of a single active luminescence centre in this temperature range. A TL method based on various heating rates was used to derive more reliable trap depths of 0.75, 0.95, 1.25, 1.46 and 1.66 eV whereas deconvolution methods provided somewhat lower values. The most intense room-temperature afterglows (that were easily observable beyond 1000 s) were obtained from samples annealed at 1250 and 1500 °C, and were attributed mainly to depopulation of the 1.25 eV traps.  相似文献   

14.
有机-无机复合ZrO2-SiO2平面光波导   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法合成ZrO2-SiO2有机一无机复合光波导材料,通过改变其中ZrO2的含量来调节材料的折射率,使材料分别适用于平面光波导的导光层(ng≈1.497)和衬底层、包层(mb=nc≈1.479)。采用旋转涂膜工艺和相应的热处理,在单晶硅基片上制备衬底层、导光层和包层等薄膜,其中导光层介质因具有感光性而可通过紫外光刻来制备光路图案。所得有机一无机复合ZrO2-SiO2板型平面光波导(衬底层 导光层),用棱镜耦合截断法测试其光损耗在632.8nm波长处约为0.8dB/cm。对板型平面波导的导光层薄膜进行紫外光刻和异丙醇淋洗,制备出脊状光波导通道,在覆盖包层后,即获得埋层沟道式平面光波导。采用端耦合截断法测试了埋层沟道式平面光波导的光损耗(小于0.1dB/cm),并观察了其近场图像以及导光材料在近红外窗口的吸收光谱。  相似文献   

15.
CrOx在ZrO2上的分散状态及其CO还原NO性能的研究   总被引:2,自引:1,他引:1  
利用XRD和BET等物理技术研究了CrOx对ZrO2的抗烧结性能及Cr的分散状态rOx是良好的ZrO2抗烧结剂,会抑制ZrO2晶型从无定形→四方→单斜的相变过程;CrOx与ZrO2之间的强相互作用还有利用于CrOx在ZrO2表面的分散,ZrO2表面的分散,NO的TPD-MS实验表明,NO在CrOx/ZrO2表面存在两种与ZrO2作用强弱不同的吸附态,在程序升温脱附过程中发生了NO的离解反应。NO+  相似文献   

16.
二氧化锆薄膜制备及其特性测量   总被引:2,自引:0,他引:2       下载免费PDF全文
在室温下采用电子束蒸发的办法制备二氧化锆(ZrO2)薄膜。 借助紫外分光光度计、原子力显微镜(AFM)、X射线衍射(XRD)等方法研究了薄膜的透射率和表面结构。 同时研究了不同退火温度对薄膜物理性质的影响。在退火温度700,900,1 050 ℃时显微镜图像没有明显差别。随着退火温度的变大,薄膜表面的晶粒的直径逐渐变大,但粒径均在25 nm左右。当退火温度达到1 150 ℃时,粒径变得很大(约400 nm)。在700,900,1 050 ℃下退火后的薄膜的X射线衍射谱没有明显差别。在退火温度1 150 ℃下出现了较高的峰,研究结果表明:退火温度的增加,大量大粒径二氧化锆单晶晶粒出现,使得二氧化锆薄膜的漏电流增大,从而导致其热稳定性变差。  相似文献   

17.
Starting from results from He-pycnometry, electron diffraction, Extended X-ray Absorption Fine Structure Spectroscopy and Perturbed Angular Correlation Spectroscopy the phase transformations and structures of zirconia are described. From a comparison of these results with those obtained on other oxide nanoparticles it is concluded that the phases and structure of nanoparticles are different compared to those of coarse-grained material. The difference of the transformation temperature of bare and coated nanoparticles was used to estimate enthalpy and entropy of the tetragonal → monoclinic transformation for nanoparticulate zirconia. By comparison with results obtained from other nanocrystalline oxides, the following rules were derived: Provided the particles are sufficiently small, particles made of materials showing phase transitions crystallize in the high temperature structure. However, compared to coarse-grained materials of the same structure, the density of nanoparticles is reduced. A first estimation limits this phenomenon to particle sizes well below 10 nm. Those nanoparticles follow the generalized phase diagram postulated by Tammann.  相似文献   

18.
The atomic structure of amorphous and crystalline zirconium dioxide (ZrO2) films is studied using X-ray diffraction and extended X-ray absorption fine structure techniques. The electron structure of ZrO2 is experimentally determined using X-ray and UV photoelectron spectroscopy, and the electron energy band structure is theoretically calculated using electron density functional method. According to these data, the valence band of ZrO2 consists of three subbands separated by an ionic gap. The upper subband is formed by the O2p states and Zr4d states; the medium subband is formed by the O2s states; and the narrow lower subband is formed predominantly by the Zr4p states. The bandgap width in amorphous ZrO2, as determined using the electron energy loss spectroscopy data, amounts to 4.7 eV. The electron band structure calculations performed for a cubic ZrO2 phase point to the existence of both light (0.3m 0) and heavy (3.5m 0) holes, where m 0 is the free electron mass. The effective masses of band electrons in ZrO2 fall within (0.6–2.0)m 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号