首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
激光加速器可以输出具有独特品质的质子束,例如μm尺寸、ps脉冲长度和高峰值电流。强流粒子束的空间电荷力效应较强,对面向应用的束流传输提出了挑战。通过二维PIC模拟研究了激光加速后与质子速度接近的电子的影响。采用椭球模型估算空间电荷力的影响,比较不同电荷分布的差异。结果表明每束团质子数超过1010后空间电荷力显著影响质子束传输,甚至严重破坏束流品质。空间电荷力的影响在20 ps后显著减弱,离开靶约1.2 mm。  相似文献   

2.
为了研究激光鞘场中质子层的尺寸对质子束特性的影响,本文应用中国工程物理研究院 激光聚变研究中心的二维Particle-In-Cell (2D-PIC)数值模拟程序Flips2D进行了相关数值模拟研究. 研究了质子束总能量随时间的变化,得出了加速持续过程与激光脉冲持续时间的关系; 研究了质子层的宽度对加速后质子束发散角和能谱的影响;研究了质子层的厚与加速后质子束 发散角和能谱的关系;得出了质子层的初始尺寸对加速后质子特性的影响规律.  相似文献   

3.
为了克服激光加速中强流离子束空间电荷效应对粒子输运的影响,提出一种利用两块不同密度的固体靶先后和一束强度约为1022 W/cm2、脉冲长度为5T(T为激光周期)的超强脉冲激光相互作用的方案,实现了中性等离子体块的加速。通过一维PIC数值模拟研究发现,在合适的参数下,加速后的电子与质子几乎以相同的速度共同飞行长达60λ(λ为激光波长)的距离,其中质子与电子的能量分别为GeV和100MeV量级。  相似文献   

4.
非线性反馈控制强流加速器中的束晕—混沌现象   总被引:25,自引:5,他引:20       下载免费PDF全文
 基于Poincare-Lyapunov定理, 应用定性分析,提出用非线性反馈法实现对束晕-混沌的控制。矩阵传输理论研究已发现:质子束的空间电荷效应导致质子束径向发散及束晕现象。因此, 构造一类正弦等形式的非线性反馈函数去抵消质子束空间电荷非线性效应。PIC数值模拟结果证实该方法的可行性,为实验提供一定理论依据。  相似文献   

5.
在多束激光辐照靶的实验中,时间同步是十分重要的。我们用双光子荧光(TPF)法测量了六束钕玻璃高功率激光系统(6×10~(11)W)的时间同步。测量时间同步的光源是该激光系统中的主被动锁模Nd~(3+)∶YAG振荡器,脉宽是20ps。 相对辐照的二束激光的时间同步测量,采用了在靶位处放置一个四面通光的双光子荧光盒,而正交辐照的二束激光的时间同步测量,采用了在靶位处放置一个半透膜板和一个双光子荧光装置。时间同步测量简便、直观。 给出了用双光子荧光法测量时间同步的误差。两束激光相对辐照时,同步误差为4ps,两束激光正交辐照时,同步误差为5ps。六束激光时间同步误差为10ps。  相似文献   

6.
提出了一种新型的双锥靶结构用于准单能质子束加速。利用二维PIC粒子模拟程序研究了强激光与双锥靶作用加速产生质子束的物理过程以及质子束品质。双锥靶产生的质子束在峰值能量和发散角度等方面都明显优于相同激光条件下单锥靶和平面靶的结果。尤其与平面靶相比,双锥靶质子束的峰值能量提高了5倍以上,而且很好地保持准单能性。一方面双锥靶的内锥部分是临界密度材料,提高了激光的吸收效率;另一方面双锥靶内形成了更强的准静态磁场,可以约束引导更多的超热电子传输过锥尖,进而增强加速质子束的鞘层电场。  相似文献   

7.
利用1维粒子模拟程序,研究了超短超强激光脉冲与超薄双层靶(基底层和加速层厚度均为nm量级)相互作用产生准单能质子束的过程。研究表明,基底层厚度及加速层厚度对质子能谱的影响至关重要。减小基底层厚度,靶后静电场增强,质子的最大能量显著增大;减小加速层厚度,靶后静电场分布变得更加均匀,质子能谱中心能量变化不大,单能性变好。通过优化参数,获得了能散度为7%的准单能质子束。  相似文献   

8.
孟晓慧  董志伟 《强激光与粒子束》2018,30(6):064002-1-064002-5
基于粒子云网格计算方法,对质子束轰击靶面产生二次电子的效应进行了模拟研究,得到了不同电场强度对质子束的品质以及其产生的二次电子的数量的影响。研究表明,50 kV电压下,质子束束腰宽度1.8 mm,并有近10%的质子束打在阴极侧壁上;150 kV电压下,质子束束腰宽度1.2 mm。这说明,抽取电场强度小时质子束分散,其束流品质下降;抽取电场强度大时质子束紧凑。通过调控抽取、加速电压,可以有效地控制到靶质子流的聚散状况,以及由此产生的二次电子的强度及分布。  相似文献   

9.
基于神光Ⅱ升级装置激光条件,利用流体程序、粒子模拟程序和Fokker-Placnck程序,模拟研究质子快点火中所需质子束的品质以及产生所需质子束的激光条件.首先根据快点火靶的条件,利用Fokker-Planck方程模拟快点火所需的质子束的能量范围,模拟表明当背景等离子密度为300 g/cm3时,能量为7—12 MeV的质子束适合点火;当背景等离子体密度为400 g/cm3时,能量为8—18 MeV的质子束适合点火.再根据神光Ⅱ升级装置实验条件研究质子束所需的激光参数,通过利用粒子模拟程序,结合流体程序给出的预等离子体,分别模拟研究了加预等离子体和不加预等离子体两种情况下的质子加速,在有预等离子体时得到的质子束最大能量约为22 MeV,没有预等离子体时得到的质子束最大能量为17.5 MeV,具体分析了两种情况下质子加速的物理机制,其结果跟等离子体自由膨胀模型结果符合得很好.  相似文献   

10.
采用飞秒激光辐照固体薄膜Cu靶的方式对质子束的产生及质子束能谱开展了实验研究。在SILEX-Ⅰ飞秒激光装置上,保持脉宽为30 fs不变,测量了不同激光能量和功率密度下辐照7 m Cu靶时的质子能谱。研究结果表明:质子沿着靶背法线方向发射,质子在一定能量处出现截断;随着质子束能量的增加,质子束流减小;轰击厚为7 m的Cu靶时,激光能量越大则质子束流越强;随着激光功率密度的增加,质子截止能也随之增加。  相似文献   

11.
近临界密度是激光等离子体相互作用中能量吸收和高能电子产生的重要等离子体参数区间.利用激光加速产生的质子束作为电磁场探针,研究了超强激光与近临界密度等离子体相互作用产生的等离子体结构及其时间演化.实验发现,初始均匀分布的质子束穿过近临界密度等离子体后分裂为两个斑.两个质子束斑的间距随着作用时间先增大后减小.并且两个束斑呈不对称分布.分析认为,幅度约为10~9 V/m的不对称分布瞬变电场是产生质子束偏折和分裂的主要原因.粒子模拟的结果也验证了这一解释.该研究对激光尾场电子加速、离子加速、惯性约束聚变快点火方案研究等有一定的参考价值.  相似文献   

12.
 为了解成像磁透镜系统使用对提高质子照相品质的作用,研究了成像磁透镜系统对核反应产生的次级质子的消除作用。利用MCNPX模拟了次级质子的能谱,结果表明:次级质子的平均能量不足照相质子束的50%。从次级质子的能量特性和成像系统质子运动学方面的分析表明:成像磁透镜系统可消除次级质子的影响。利用程序MCNPX对含成像磁透镜系统的质子照相进行了模拟,结果显示:成像磁透镜系统将次级质子对光程的影响减小到2%以下,显著提高了图像品质。  相似文献   

13.
基于带电粒子活化测谱方法在SGⅡ-U装置上开展了皮秒激光靶背鞘场机制质子加速实验研究,对靶参数进行了优化.利用带电粒子活化测谱方法测量了相同激光条件、不同Cu薄膜靶厚度情况下靶背鞘场加速质子的最高截止能量、角分布、总产额以及激光能量到质子的转化效率等关键参数.实验发现,SGⅡ-U皮秒激光靶背鞘场加速机制的最佳Cu薄膜靶厚度为10 μm,对应质子最高能量接近40 MeV,质子(>4 MeV)总产额约4×1012个,激光能量到质子的转化效率约2%.薄膜靶更厚或者更薄都会降低加速质子的最高截止能量;当靶厚减薄至1 μm时,皮秒激光的预脉冲开始对靶背鞘场产生显著影响,质子最高截止能量急剧下降,高能质子束斑呈现空心结构;而当靶厚增加至35 μm时,虽然质子束的能量有所降低,但是质子束斑的均匀性更好.  相似文献   

14.
发散角过大是制约超强激光与固体靶相互作用加速产生高能质子束应用的一个重大物理难题.本文提出了一种结构化的通道靶型,与超强激光相互作用可提高质子束的发散特性,通道壁上产生的横向电荷分离静电场可对质子有效聚焦.采用二维particle-in-cell粒子模拟程序对激光通道靶相互作用过程进行了研究,分析了加速质子束的性能特点.模拟结果表明,与传统平面靶相比,通道靶可以在不过多损失能量的情况下产生具有更好准直性的质子束,尤其当通道靶的直径与激光焦斑尺寸和质子源尺寸相当时,横向静电场能够有效聚焦质子束,并且可保证相对较高的激光能量利用率.  相似文献   

15.
fs激光在靶背表面产生的质子束成丝   总被引:5,自引:2,他引:3       下载免费PDF全文
 介绍了利用3TW/60fs钛宝石超短超强激光与20μm铜薄膜靶相互作用的实验。实验观测到质子束的角分布随激光功率密度有所变化。在较高的功率密度(~1×1018 W/cm2)时,观测到环状的质子束分布,发散角较大。在较低的激光功率密度(~2×1017 W/cm2)时,质子束发散角减小,质子束出现成丝现象。质子束的角分布实际上反映了从靶前输运到靶背的超热电子电流横向分布。在输运过程中,由于Weibel不稳定性会使超热电子电流出现空心化并最后破裂成丝。  相似文献   

16.
为了更细致地理解鞘场质子加速机制,应用2维数值模拟程序Flips2D研究了质子的初始位置对加速以后质子束特性的影响。数值模拟结果表明:质子的初始位置对质子束特性的影响非常明显。质子的出射角与其在横向的初始位置有关,初始位置离激光轴越远,其出射角越大。  相似文献   

17.
 采用短脉冲强激光辐照固体双层薄靶的方式对质子束的产生及质子束角分布开展了实验研究。在SILEX-Ⅰ短脉冲激光装置上利用脉宽为30 fs的强激光辐照背面镀有CH膜的金膜靶,在距离靶背3.3 cm处采用CR39记录靶背出射的质子角分布。通过分析靶背出射质子的角分布,研究了激光功率密度和对比度对质子加速机制的影响。研究结果表明:占主导地位的质子产生和加速机制对激光预脉冲比较敏感。激光预脉冲较弱时,靶背壳电场加速机制占主导地位;当激光预脉冲较强时,靶前加速机制占主导地位。此外,还对导致质子环形分布的磁场大小进行了估算。  相似文献   

18.
利用激光离焦的方法优化超强激光驱动的质子加速   总被引:1,自引:0,他引:1       下载免费PDF全文
在中国科学院物理研究所"极光Ⅱ 号"飞秒激光装置上,对激光与薄膜靶相互作用产生的靶后质子束特性进行了实验研究.结果发现,在主脉冲前存在较强的飞秒预脉冲的情况下,通过适当地对激光束散焦,可以使质子束的转换效率提高3 个数量级,并同时改善质子束的准直性.分析表明,激光散焦的方法可以有效地抑制预脉冲的流体力学效应对质子加速的负面影响,从而提高质子的转换效率.此外,粒子模拟还发现,散焦量增大时可以产生更多的中低能超热电子,这也有利于建立高质量的质子加速电场. 关键词: 超短脉冲激光与等离子体相互作用 质子加速 转换效率  相似文献   

19.
静电加速管中强流空间电荷效应的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 对一种工业用大功率电子加速器(450kW)的加速管中的空间电荷效应作了5点假设,建立了物理模型。对模型的束内外径向电位分布、空间电荷对轴上电位的影响,以及空间电荷力对束流传输的影响等进行了理论分析,得到了束内径向电位分布。结果表明:束流内部径向电位沿径向均呈抛物线变化,并在轴上达到最小值;而空间电荷产生的束内电场与半径呈线性变化;空间电荷不仅会引起轴上电位的跌落,而且对束流有发散作用,特别是在电子速度较低时更为明显。在考虑了空间电荷效应后,强流静电加速管的电场设计关键在加速管的前端,与弱流加速管相比,强流加速管的电场变化要大得多。  相似文献   

20.
超强激光加速产生的高能质子束源在基础物理研究、材料科学、生物医疗等领域具有广泛应用前景。基于激光聚变研究中心的SILEX-II装置,开展了高对比度飞秒激光驱动纳米刷靶质子加速实验研究。采用等离子体镜技术进一步提升激光对比度,有效降低了预脉冲对纳米刷靶结构的影响。相比于平面靶,采用纳米刷靶质子截止能量提高到1.5倍,质子束产额增加近一个量级,成功验证了超高功率密度下纳米刷靶对激光离子加速的增强效果,并且有效提升了质子束空间分布的均匀性。研究结果为高品质质子束源的产生和应用提供了技术途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号