首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目前大多数阵风减缓控制方法都是等到飞机到达风场之后才起作用,由此带来了时滞与舵面速率饱和等问题。为了解决这一问题,提出了一种基于风扰动预测的阵风减缓控制系统方案。首先,对风扰动预测技术进行了研究,利用二阶互补滤波器实现了一种基于激光测风雷达获取的阵风信息与其它渠道获取的阵风信息的数据融合算法。其次,以某型民用飞机模型为对象,采用LQR方法设计最优状态调节器使得性能指标最小。接着,引入基于风扰动预测的前馈补偿,使得在未来阵风到达时飞机状态要尽可能保持不变。仿真结果表明,基于风扰动预测的阵风减缓最优控制系统能大幅度地减少阵风干扰对飞机法向过载和俯仰角速度的影响,证明了所设计的控制系统方案的正确性和有效性。  相似文献   

2.
Smart structures are usually designed with a stimulus-response mechanism to mimic the autoregulatory process of living systems. In this work, in order to simulate this natural and self-adjustable behavior, an adaptive fuzzy sliding mode controller is applied to a shape memory two-bar truss. This structural system exhibits both constitutive and geometrical nonlinearities presenting the snap-through behavior and chaotic dynamics. On this basis, a variable structure controller is employed for vibration suppression in the chaotic smart truss. The control scheme is primarily based on sliding mode methodology and enhanced by an adaptive fuzzy inference system to cope with modeling inaccuracies and external disturbances. The robustness of this approach against both structured and unstructured uncertainties enables the adoption of simple constitutive models for control purposes. The overall control system performance is evaluated by means of numerical simulations, promoting vibration reduction and avoiding snap-through behavior.  相似文献   

3.
This paper presents theoretical and experimental work on concurrent active noise and vibration control for a ventilation duct. The active noise control system is used to reduce the air-borne noise radiated via the duct outlet whereas the active vibration control system is used to both reduce the structure-borne noise radiated by the duct wall and to minimise the structural feed-through effect that reduces the effectiveness of the active noise control system. An elemental model based on structural mobility functions and acoustic impedance functions has been developed to investigate the principal effects and limitations of feed-forward active noise control and decentralised velocity feedback vibration control. The principal simulation results have been contrasted and validated with measurements taken on a laboratory duct set-up, equipped with an active noise control system and a decentralised vibration control system. Both simulations and experimental results show that the air-borne noise radiated from the duct outlet can be significantly attenuated using the feed-forward active noise control. In the presence of structure-borne noise the performance of the active noise control system is impaired by a structure-borne feed-through effect. Also the sound radiation from the duct wall is increased. In this case, if the active noise control is combined with a concurrent active vibration control system, the sound radiation by the duct outlet is further reduced and the sound radiation from the duct wall at low frequencies reduces noticeably.  相似文献   

4.
Z.S. Liu  C. Lu 《Applied Acoustics》2006,67(2):112-134
This paper presents passive and active vibro-acoustic noise control methods for attenuating the interior noise level in box structures which can be an analogy of cabins of vehicle and aircraft. The structural intensity (SI) approach is adopted to identify the predominant vibration panels and interior noise sources for box structures. In the study, the finite element method is used to determine the structural vibration and structural intensity in the box surfaces. According to structural intensity vectors plot and structural intensity stream lines presentation, the possible effective control positions where the dampers may be attached and the active control forces may act to reduce vibration and interior noise, are identified. From the study, it can be demonstrated that the structural intensity approach and stream line presentation are possible methods for identifying the vibro-acoustic interior noise source and predominant panels which may be modified to reduce the interior noise level. The structural intensity methodology, passive and active noise control results can be extended to the further study of the vibration and interior noise control of actual cabins of vehicles and aircraft.  相似文献   

5.
The evolution of new-generation aircraft engines is transitioning from a bypass ratio of 4–6 to an increased ratio of 8–12. This is leading to substantial broadening of the vibration spectrum of engines with a shift to the low-frequency range due to decreased rotation speed of the fan rotor, in turn requiring new solutions to decrease structural noise from engine vibrations to ensure comfort in the cockpits and cabins of aircraft.  相似文献   

6.
进行飞机翼面损伤下的重构控制对提高飞机的安全可靠性具有重要的意义,根据飞机翼面损伤的特点,提出一种基于L1自适应控制的重构控制方法,首先根据翼面故障对飞机气动特性的影响,建立故障参数模型,然后根据L1自适应控制快速自适应和鲁棒性的特点,选择合适的自适应律和滤波器进行重构控制器的设计,最后根据飞机升降舵翼面损伤情况进行仿真分析,结果表明了本文所用方法可以进行部分翼面损伤的快速重构控制。  相似文献   

7.
The continuous development of spacecraft with large flexible structures has resulted in an increase in the mass and aspect ratio of launch vehicles, while the wide application of lightweight materials in the aerospace field has increased the flexible modes of launch vehicles. In order to solve the problem of deviation from the nominal control or even destabilization of the system caused by uncertainties such as unknown or unmodelled dynamics, frequency perturbation of the flexible mode, changes in its own parameters, and external environmental disturbances during the flight of such large-scale flexible launch vehicles with simultaneous structural deformation, rigid-elastic coupling and multimodal vibrations, an improved adaptive augmentation control method based on model reference adaption, and spectral damping is proposed in this paper, including a basic PD controller, a reference model, and an adaptive gain adjustment based on spectral damping. The baseline PD controller was used for flight attitude control in the nominal state. In the non-nominal state, the spectral dampers in the adaptive gain adjustment law extracted and processed the high-frequency signal from the tracking error and control-command error between the reference model and the actual system to generate the adaptive gain. The adjustment gain was multiplied by the baseline controller gain to increase/decrease the overall gain of the system to improve the system’s performance and robust stability, so that the system had the ability to return to the nominal state when it was affected by various uncertainties and deviated from the nominal state, or even destabilized.  相似文献   

8.
In this paper, the feasibility of using synthesized structural acoustic sensors (SSAS) for active noise control inside irregularly shaped enclosures is investigated. A SSAS consists of a cluster of inter-connected discrete PVDF elements, located on the surface of a vibrating structure enclosing a sound field. An optimal design ensures the sensor output to be directly related to the acoustical potential energy inside the enclosure. Hence, synthesized structural acoustic sensors can provide error signals for an active noise control system, and the use of microphones inside the enclosure can be avoided. A cylindrical shell with a floor partition, which can be used to model an aircraft cabin, is used as a test case. PZT actuators are used as control actuators. Both SISO (single input and single output) and MIMO (multi-input and multi-output) control systems are optimally designed using Genetic Algorithms and implemented with a Filtered-X Feedforward LMS (least-mean-square) controller. Their control performances are evaluated with different types of disturbances. To show the effectiveness of the optimal design approach, some non-optimal control systems are also tested and compared with the optimal one. It is shown that with optimally designed SSAS, an active structural acoustic control system can effectively reduce noise inside the enclosures without using any acoustic transducers.  相似文献   

9.
Structural noise and vibrations control can be achieved using two strategies: active - with feed-forward controller, a sensor and an actuator [1-3] or passive, by piezoelectric shunt damping [4-8], when a piezoelectric transducer will act as a sensor and an actuator. Potential applications of these structures are investigated. Two numerical (FEM) models based on the active and passive damping strategies are compared. The numerical solutions were confirmed experimentally.  相似文献   

10.
In this paper, active control of periodic vibration is implemented using maglev actuators which exhibit inherent nonlinear behaviors. A multi-channel feedforward control algorithm is proposed to solve these nonlinear problems, in which maglev actuators are treated as single-input–single-output systems with unknown time-varying nonlinearities. A radial basis function network is used by the algorithm as its controller, whose parameters are adapted only with the model of the linear system in the secondary path. Compared with the strategies in the conventional magnetic-levitation system control as well as nonlinear active noise/vibration control, the proposed algorithm has the advantage that the nonlinear modeling procedure of maglev actuators and the usage of displacement sensors could be both avoided. Numerical simulations and real-time experiments are carried out based on a multiple-degree-of-freedom vibration isolation system. The results show that the proposed algorithm not only could efficiently compensate for the actuators’ time-varying nonlinearities, but also has the ability to greatly attenuate the energy of periodic vibration.  相似文献   

11.
Noise and vibration is a serious problem in all types of aircraft. Any techniques that lower cabin noise and vibration levels by even a few decibels with little or no weight or performance penalties are worth pursuing. Propeller synchrophasing is one such technique that has shown potential in aircraft with two or more propellers; however this technique is not being used to its full potential because the synchrophase angles are typically fixed. This paper provides a detailed examination of how the optimum synchrophase angles in a typical four-engine propeller aircraft vary with different altitudes and airspeeds, and how this information could lead to the design of new adaptive propeller synchrophasing systems and potentially yield improvements to other active noise control measures in propeller aircraft.  相似文献   

12.
Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler–Nichols method (ZN), Modified Zeigler–Nichols method, Tyreus–Luyben tuning, Astrom–Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler–Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.  相似文献   

13.
The coupling between variables in the multi-input multi-output (MIMO) systems brings difficulties to the design of the controller. Aiming at this problem, this paper combines the particle swarm optimization (PSO) with the coefficient diagram method (CDM) and proposes a robust controller design strategy for the MIMO systems. The decoupling problem is transformed into a compensator parameter optimization problem, and PSO optimizes the compensator parameters to reduce the coupling effect in the MIMO systems. For the MIMO system with measurement noise, the effectiveness of CDM in processing measurement noise is analyzed. This paper gives the control design steps of the MIMO systems. Finally, simulation experiments of four typical MIMO systems demonstrate the effectiveness of the proposed method.  相似文献   

14.
This paper presents an active vibration control system for use with structural-acoustic coupling system using piezoelectric actuators and piezoelectric sensors. For modelling a complicated 3-D vehicle cabin model, the structural-acoustic coupling system is analyzed by combining the structural data from modal testing with the acoustic data from the finite element method. Through the structural-acoustic analysis program, the control plate and the control modes are selected, which are most effective for attenuating its noise. A robust LQG controller with two sensor signal filters is designed to remove the experimental problems such as the spillover effect due to uncontrolled modes. The robust LQG controller for the structural-acoustic coupling system can reduce the interior noise of the cavity as well as the structural vibration of the cabin.  相似文献   

15.
为提高四轴飞行器的数据采集与数据处理能力,降低四轴飞行器的功耗,研制了一种基于FPGA的四轴飞行控制器。飞行控制器以NIOS II处理器为控制核心,结合嵌入的SPI、I2C、UART等IP核实现了数据的实时采集与快速处理,并提出并行处理PPM解码和编码、超声波检测与控制、蜂鸣器控制的设计方案,利用VerilogHDL语言在FPGA上设计了这些并行处理功能模块,这些功能模块通过PIO核与NIOS II处理器连接,能够自主完成所规定的处理功能。经过多次飞行测试,四轴飞行器能够稳定的起飞和降落,快速的飞行,转弯,上升和下降,也能够避开障碍物,验证了四轴飞行控制器功能稳定,功耗较低,已达到设计的要求。  相似文献   

16.
An active control approach to vibrations in multi-story planar frame structures is presented in this paper. The controller is designed from a wave vibration standpoint, in which vibrations are described as waves that propagate along uniform waveguides, and are reflected and transmitted upon structural discontinuities. Regardless of the complexity of a structure, from the wave point of view it consists of only two basic types of structural components, namely, structural elements and joints. In this paper, vibrations in a multi-story planar frame structure are controlled through controlling its structural elements and its joints.  相似文献   

17.
Adaptive filter techniques and the filtered-x least mean square (FxLMS) algorithm have been used in Active Noise Control (ANC) systems. However, their effectiveness may degrade due to the nonlinearities and modeling errors in the system. In this paper, a new feedback ANC system with an adaptive neural controller and variable step-size learning parameters (VSSP) is proposed to improve the performance. A nonlinear adaptive controller with the FxLMS algorithm is first designed to replace the traditional adaptive FIR filter; then, a variable step-size learning method is developed for online updating the controller parameters. The proposed control is implemented without any offline learning phase, while faster convergence and better noise elimination can be achieved. The main contribution is that we show how to analyze the stability of the proposed closed-loop ANC systems, and prove the convergence of the presented adaptations. Moreover, the computational complexities of different methods are compared. Comparative simulation results demonstrate the validity of the proposed methods for attenuating different noise sources transferred via nonlinear paths, and show the improved performance over classical methods.  相似文献   

18.
In this paper, the dynamic aeroelastic response and the related robust control of aircraft swept wings exposed to gust and explosive type loads are examined. The structural model of the wing is in the form of a thin/thick-walled beam and incorporates a number of non-standard effects, such as transverse shear, material anisotropy, warping inhibition, the spanwise non-uniformity of the cross-section, and the rotatory inertias. The circumferentially asymmetric stiffness lay-up configuration is implemented to generate preferred elastic couplings, and in this context, the implications of the plunging–twist elastic coupling and of warping inhibition on the aeroelastic response are investigated. The unsteady incompressible aerodynamic theory adopted in this study is that by von-Kármán and Sears, applicable to arbitrary small motion in the time domain. The considered control methodology enabling one to enhance the aeroelastic response in the subcritical flight speed range and to suppress the occurrence of the flutter instability is based on a novel control approach that is aimed to improve the robustness to modeling uncertainties and external disturbances. To this end, a combined control based on Linear Quadratic Gaussian (LQG) controller coupled with the Sliding Mode Observer (SMO) is designed and its high efficiency is put into evidence.  相似文献   

19.
Bending vibrations of geometrically nonlinear beams, which are connected with some clearance in their contact areas, are analyzed during dynamic extending and retracting motion of the different segments. For the physical model of a fork lifter, as an example of application, the governing system equations are derived by applying Hamilton's principle. Using a discretization procedure, based on admissible shape functions, a system of coupled, nonlinear, time-varying, ordinary differential equations is generated. Linearization and model reduction leads to a sequence of simple models. On the basis of these models, an adaptive state regulator and an adaptive full-state observer (Luenberger Observer) are designed for vibration suppression using the optimal linear quadratic regulator (LQR). The adaptive controller and observer are applied to the original, significantly more complicated, geometrically nonlinear and time-varying system with clearance so that the robustness of the controlled system can be studied during dynamic extending and retracting motions.  相似文献   

20.
针对多股螺旋弹簧加工机床张力控制系统的非线性特性及存在干扰的问题,提出了基于支持向量回归(Support Vector Regression, 简称SVR)的有效抑制噪声的控制算法;即在基于SVR的逆动力学建模中采取非线性松弛因子替代线性松弛因子,抑制噪声在建模过程中的影响,提高建模精度;把系统逆模型作为前馈控制器,构成伪线性系统,PID控制器作为反馈控制,组成有效抑制噪声的复合控制算法;实验结果表明,这种改进基于SVR的复合控制方式在多股螺旋弹簧张力控制系统中具有较好的控制精度和鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号