首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The layered film-substrate structure is widely used in many fields such as microelectronic devices, but the ultrasonic measurement of film material parameters, especially the characterization of shear wave velocity, is a difficult problem. In this paper, the dispersion characteristics of Scholte wave at the liquid-solid interface and the acoustic pressure response generated by a pulse excitation are theoretically analyzed. The results show that the Scholte wave dispersion at the liquid-solid int...  相似文献   

2.
The damping decrement of Landau damping and the effect of thermal velocity on the frequency spectrum of a propagating wave in a bounded plasma column are investigated.The magnetized plasma column partially filling a cylindrical metallic tube is considered to be collisionless and non-degenerate.The Landau damping is due to the thermal motion of charge carriers and appears whenever the phase velocity of the plasma waves exceeds the thermal velocity of carriers.The analysis is based on a self-consistent kinetic theory and the solutions of the wave equation in a cylindrical plasma waveguide are presented using Vlasov and Maxwell equations.The hybrid mode dispersion equation for the cylindrical plasma waveguide is obtained through the application of appropriate boundary conditions to the plasma-vacuum interface.The dependence of Landau damping on plasma parameters and the effects of the metallic tube boundary on the dispersion characteristics of plasma and waveguide modes are investigated in detail through numerical calculations.  相似文献   

3.
Generation of the second harmonic initiated by Bell-Plesset effects in a cylindrical geometry is studied analytically. For an initial single-mode velocity perturSation, the second-order mode-coupling formula is obtained by expanding the perturbation displacement and velocity potential up to the second-order accuracy. It is found that the initially symmetric interface evolves into a significant bubble-spike asymmetric pattern. The second-order solutions clearly show that the amplitude of the spike grows faster than that of the buSble. The temporal evolutions of the amplitudes of the 5ubSie and spike are dependent on the interface velocity Vo. The larger interface velocity leads to the smaller amplitude of the perturbation at an arbitrary interface position in a cylindrically convergent geometry.  相似文献   

4.
Analysis of the stability and density waves for traffic flow   总被引:7,自引:0,他引:7       下载免费PDF全文
薛郁 《中国物理》2002,11(11):1128-1134
In this paper, the optimal velocity model of traffic is extended to take into account the relative velocity. The stability and density waves for traffic flow are investigated analytically with the perturbation method. The stability criterion is derived by the linear stability analysis. It is shown that the triangular shock wave, soliton wave and kink wave appear respectively in our model for density waves in the three regions: stable, metastable and unstable regions. These correspond to the solutions of the Burgers equation, Korteweg-de Vries equation and modified Korteweg-de Vries equation. The analytical results are confirmed to be in good agreement with those of numerical simulation. All the results indicate that the interaction of a car with relative velocity can affect the stability of the traffic flow and raise critical density.  相似文献   

5.
The perturbation method is employed to analyse the guided waves in a borehole surrounded by a cubic crystal medium for the first time. The cubic crystal medium is regarded as a reference unperturbed isotropic state added to the perturbation. The dispersion characteristics of Stoneley wave, pseudo-Rayleigh wave, flexural wave, and screw wave are investigated in detail. It is found that dispersion of the guided waves excited by monopole and dipole sources does not depend on the azimuth of the source, whereas the dispersion of screw wave excited by quadrupole source is significantly related to the azimuth of the source. Screw waves propagated along different azimuth in the borehole can be split. This is different from screw waves in transversely isotropic media (hexagonal crystal), which have been widely studied.  相似文献   

6.
The formation of the spatial solitons in the quadratic nonlinearity x(2) media by cascading second harmonic generation (SHG) in quasi-phase-matched (QPM) sample is studied on the basis of nonlinear Schrodinger equation (NLSE). When the solitary wave propagates in the QPM media, it formed optical wave-guides through cascading x(2) effect called self-induced soliton wave-guide. Transverse refractive index distribution of the self-induced soliton wave-guide of fundamental and SHG wave is obtained by cascading process. Analysis of guided-mode of such self-induced soliton wave-guide is first proposed to our knowledge. Be-  相似文献   

7.
Bo Ren 《理论物理通讯》2021,73(3):35003-27
The D’Alembert solution of the wave motion equation is an important basic formula in linear partial differential theory.The study of the D’Alembert wave is worthy of deep consideration in nonlinear partial differential systems.In this paper,we construct a(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli(eBLMP)equation which fails to pass the Painleve property.The D’Alembert-type wave of the eBLMP equation is still obtained by introducing one arbitrary function of the traveling-wave variable.The multi-solitary wave which should satisfy the velocity resonance condition is obtained by solving the Hirota bilinear form of the eBLMP equation.The dynamics of the three-soliton molecule,the three-kink soliton molecule,the soliton molecule bound by an asymmetry soliton and a one-soliton,and the interaction between the half periodic wave and a kink soliton molecule from the eBLMP equation are investigated by selecting appropriate parameters.  相似文献   

8.
By using the successive approximation method,a wave equation,in which the second order ofapproximation is taken into account,has been derived from the basic equations of hydrodynamicsin Lagrangian coordinates.The reflection and refraction of a large amplitude plane sound waveon the plane interface of two non-mixing liquids are studied.It is interesting to point out that thereflection and refraction coefficients of second approximation not only depend on parameters ofmedia,but also relate to the position of sound source.It is found that the amplitudes of the secondorder reflected wave and refracted wave do not keep constant at the wavefront anymore as inlinear acoustics.Hence there are reflected wave and refracted wave which propagate in the directionother than that of waves,travelling along the directions defined by laws of reflection and refractionin linear acoustics.The nonlinear effects have to be taken into account in order to understand thephysical meaning of the results reported by Muir et al..  相似文献   

9.
张杰  朱洪涛  张亮  苏利红  邓关宇  王辉 《中国物理 B》2017,26(6):68702-068702
The minimization of spurious wave reflection is a challenge in multiscale coupling due to the difference of spatial resolution between atomistic and continuum regions. In this study, a new damping condition is presented for eliminating spurious wave reflection at the interface between atomistic and continuum regions. This damping method starts by a coarse–fine decomposition of the atomic velocity based on the bridging scale method. The fine scale velocity of the atoms in the damping region is reduced by applying nonlinear damping coefficients. The effectiveness of this damping method is verified by one-and two-dimensional simulations.  相似文献   

10.
陈小刚  宋金宝 《中国物理》2006,15(4):756-766
This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.  相似文献   

11.
The interaction of surface acoustic waves generated by laser line source in the thermoelastic regime with surface notches are investigated. The finite element method is used to establish the model of the transient displacement field for surface notches with various depths and orientation. The magnitude of the signal enhancement in the near field and the mechanism by which this occurs are explained. The positions of notches were evaluated by the reflected Rayleigh wave. The depths and orientations of the notches were also determined using a shear wave that was generated through mode conversion of a surface acoustic wave at the notch tip. The results agree with previously published experimental measurements.  相似文献   

12.
The normal displacement and pressure of Scholte and Leaky Rayleigh waves at air-metal interface generated by a pulsed disc-like source are simulated theoretically by the Cagniard-de Hoop method and studied by laser ultrasound technique experimentally. It is found that the Scholte wave detected by a photorefractive interferometer is mainly contributed by the surface pressure and the Leaky Rayleigh wave is dominated by the surface displacement. It is also proven that the pulse width of these interface waves is mainly determined by the acoustic time delay on the generating source size under our experimental conditions.  相似文献   

13.
Hu W  Qian M 《Ultrasonics》2006,44(Z1):e1187-e1190
The excitation and propagation of the acoustic waves in an elastic cylinder are studied by laser ultrasonics both theoretically and experimentally. The theoretical analysis of the two-dimensional acoustic field excited by a pulsed laser line source impacting on the generatrix of an elastic cylinder is presented. The dispersive properties for both cylindrical Rayleigh wave and the higher modes--whispering gallery (WG) modes are analyzed in detail. The numerical transient displacement waveforms for a detecting point located another terminal of the cylinder diameter opposite the source are calculated. The experimental excitation and detection of the acoustic waves in an aluminum cylinder are carried out on a laser ultrasonic system, which mainly consists of a Q-switched Nd:YAG laser and a laser interferometer. The wave components of bulk waves and surface waves (cylindrical Rayleigh waves and WG modes) are analyzed by comparing the numerical and experimental waveforms. The results are in good agreement.  相似文献   

14.
Royer D  Chenu C 《Ultrasonics》2000,38(9):891-895
An analytical model has been developed for the generation of surface acoustic (Rayleigh) waves in an isotropic solid by a thermoelastic laser line source. For a Gaussian light intensity profile, this model leads to an expression in closed form for the normal surface displacement of the Rayleigh wave either in the near field or in the far field domain. Quantitative agreement has been found for experiments carried out with an interferometric optical probe on a duraluminum plate.  相似文献   

15.
I.IntroductionTbegenerationofu1trasoundbytheirradiationofpulsedlaseratso1idsurfacehasbeenwidelystlldied,boththeorctica1lyandexpcrimentallyI1-8].Intheprocessoflaserthermoelasticg6nerationofu1trasound,temperatureriseinduccdbytheabsorptionoflaserenergyproducestherma1expansion,andthcnanultrasonicsourceiscreated.Sofar,thestudyof1asergenera-honofultrasoundinso1idsconcentratesmain1yonmeta1s,anduntilrecent1y,1ittleattentionhasbenpaidtonon-mctals.Inametal,1aserenergyisabsorbedonlyatthesurfaceofthesamp…  相似文献   

16.
An optical method of generating narrowband Lamb waves is presented. It is carried out with a laser line array in a thermoelastic regime implemented by the Michelson interference technique, where the formed array element spacing can be flexibly and conveniently changed to achieve selective mode excitation. In order to simulate the displacement response generated by this array, its intensity distribution function is presented to build a theoretical analysis model and to derive the integral representation of the displacement response. The experimental device and measuring system are built to generate and detect the Lamb waves on a steel plate. Numerical calculation results of narrowband Lamb wave displacement signals based on the theoretical model show good agreement with experimental results.  相似文献   

17.
Thermoelastic wave induced by pulsed laser heating   总被引:6,自引:0,他引:6  
In this work, a generalized solution for the thermoelastic plane wave in a semi-infinite solid induced by pulsed laser heating is developed. The solution takes into account the non-Fourier effect in heat conduction and the coupling effect between temperature and strain rate, which play significant roles in ultrashort pulsed laser heating. Based on this solution, calculations are conducted to study stress waves induced by nano-, pico-, and femtosecond laser pulses. It is found that with the same maximum surface temperature increase, a shorter pulsed laser induces a much stronger stress wave. The non-Fourier effect causes a higher surface temperature increase, but a weaker stress wave. Also, for the first time, it is found that a second stress wave is formed and propagates with the same speed as the thermal wave. The surface displacement accompanying thermal expansion shows a substantial time delay to the femtosecond laser pulse. On the contrary, surface displacement and heating occur simultaneously in nano- and picosecond laser heating. In femtosecond laser heating, results show that the coupling effect strongly attenuates the stress wave and extends the duration of the stress wave. This may explain the minimal damage in ultrashort laser materials processing. Received: 23 May 2000 / Accepted: 26 May 2000 / Published online: 20 September 2000  相似文献   

18.
激光超声方法研究固-固界面波传播特性   总被引:1,自引:0,他引:1       下载免费PDF全文
对界面波的传播特性进行了理论及实验研究.首先探讨了界面波的求根问题,基于黎曼面分析,给出了求解界面波特征方程所有根的一般方法.理论上对三种常见的界面波——Stoneley波,Leaky Rayleigh及Leaky Interface波传播机理进行了分析,描述了三种界面波的波矢及位移势在两种介质中的状态.最后基于光弹效应原理, 利用全光学的激光超声手段对界面波进行了实验测量,实测结果与理论符合很好.  相似文献   

19.
马琦  胡文祥  徐琰锋  王浩 《物理学报》2017,66(8):84302-084302
理论分析了脉冲激光激发的流体-分层固体结构声场,在此基础上数值计算了流体-慢层快底固体和流体-快层慢底固体结构液-固界面Scholte波的频散特性与瞬态响应.数值结果显示,对于流体-慢层快底结构,Scholte界面波呈现出正常频散特性;而对于流体-快层慢底结构,Scholte波在较小的频厚积范围呈反常频散特性.理论瞬态信号也显示了同样的特性.采用脉冲激光激励,用水听器接收的方式进行了Scholte界面波的实验测量.实验测量和分析结果与理论结果有很好的一致性.此工作可为水浸检测条件下镀层与薄膜材料参数的超声无损表征、海底沉积物参数反演等应用提供理论基础.  相似文献   

20.
A numerical model is established to investigate the influence of transparent coating thickness on the laser-generated thermoelastic force source and ultrasound waves in the coating-substrate system by using the finite element method (FEM). Taking into account the effects of thermal diffusion, the finite width and duration of the laser source, as well as the temperature dependence of material properties, the transient temperature distributions are obtained firstly. Applying this temperature field to structure analyses as thermal loading, the thermoelastic stress field and laser-generated ultrasound wave in the specimen are obtained. The generation and propagation of the laser thermoelastically induced stress field and ultrasonic waves in coating-substrate system are presented in detail. The influence of transparent coating thickness on the transient temperature distribution, thermoelastic force source and the laser-generated ultrasound waveforms is investigated. The numerical results indicate that the thermoelastic force source and laser-generated ultrasound waveform are strongly affected by the coating thickness due to the constraint of coating. This method can provide insight into the generation and propagation of the laser-generated stress field in coating-substrate system consisting of a transparent coating and an opaque metallic substrate. It provides theoretical basics to optimize ultrasonic signal generation in particular applications and invert the physical and geometrical parameter of the coating-substrate system more accurately in the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号