首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Nd3+, Tm3+ and Yb3+ co-doped NaYF4 upconversion (UC) material was synthesized by the hydrothermal method. The structure of the sample was characterized by the X-ray diffraction, and its UC luminescence properties were investigated in detail. Under the 980 nm semiconductor laser excitation, its UC spectra exhibited distinct emission peaks at 451 nm, 475 nm and 646 nm respectively. On the basis of the comparison of UC spectra between NaYF4:Nd3+,Tm3+,Yb3+ and NaYF4:Tm3+,Yb3+, it was indicated that the existence of Nd3+ ion enhanced the blue emission intensity. The law of luminescence intensity versus pump power proved that the blue emission at 475 nm, and the red emission at 646 nm were the two-photon processes, while the blue emission at 451 nm was a three-photon process.  相似文献   

2.
An analysis of the intense blue upconversion emission at 476 and 488 nm in Tm3 +/Yb3 + codoped Y2O3 under excitation power density of 86.7 W/cm2 available from a diode laser emitting at 976 nm, has been undertaken. Fluorescence intensity ratio (FIR) variation of temperature-sensitive blue upconversion emission at 476 and 488 nm in this material was recorded in the temperature range from 303 to 753 K. The maximum sensitivity derived from the FIR technique of the blue upconversion emission is approximately 0.0035 K? 1. The results imply that Tm3 +/Yb3 + codoped Y2O3 is a potential candidate for the optical temperature sensor.  相似文献   

3.
The effect of Yb3 + concentration on the fluorescence of 12 CaO·7 Al2O3:Tm3 +/Yb3 + polycrystals is investigated. Under the excitation of 980 nm laser, the strong blue (477 nm) emission band is observed and attributed to 1G4  3H6 of Tm3 +. The ratio of blue to red emission increases with the increasing of Yb3 + and remains constant at 10 mol% Yb3 +. The pump dependence and upconversion mechanisms show that the two-photon cooperative upconversion process is responsible for the enhancement of the blue upconversion emission. The Commission Internationale de l'eclairage chromaticity coordinates (x, y) illustrate that the 12 CaO·7 Al2O3:1 mol% Tm3 +/10 mol% Yb3 + can emit high-purity blue light.  相似文献   

4.
The electronic structures of the SrWO4 crystals containing F-type color centers are studied within the framework of the fully relativistic self-consistent Dirac–Slater theory using a numerically discrete variational (DV-Xα) method. The calculations indicate that either F or F+ center has donor energy level within the forbidden band. The electronic transition energies from the two donor levels to the bottom of the conduction band are 1.82 eV and 2.28 eV corresponding to the 685 nm and 545 nm absorption bands, respectively. It is, therefore, concluded that the 545–685 nm absorption bands are originated from the F and F+ center in SrWO4 crystal respectively.  相似文献   

5.
V.B. Pawade  S.J. Dhoble 《Optik》2012,123(20):1879-1883
Here we reported photoluminescence properties of Eu2+ activated in novel and existing MgXAl10O17 (X = Sr, Ca) phosphor which has been prepared by combustion synthesis at 550 °C under UV and near UV excitation wavelength. The PL emission properties of MgSrAl10O17:Eu2+ were monitored at 254 nm and 354 nm respectively keeping emission wavelength at 469 nm. Whereas novel MgCaAl10O17:Eu2+ exhibit emission band at 452 nm keeping excitation at 378 nm. These blue emission corresponds to 4f65d1  4f7 transition of Eu2+ ions. Further phosphor was analyzed by XRD for the confirmation of desired phase and purity.  相似文献   

6.
A passively Q-switched a-cut Nd:GdVO4 self-Raman solid-state laser with Cr:YAG saturable absorber was firstly demonstrated. The first Stokes at 1173 nm was successfully obtained. At the maximum incident pump power, the pulse width was about 1.8 ns and the repetition rate was 27.5 kHz. 586.5 nm yellow laser output was also realized by use of an LBO frequency doubling crystal.  相似文献   

7.
The temperature of a transparent Cd0.7Sr0.3F2: Er3+(4%)–Yb3+(6%) crystalline plate 0.3 mm thick heated by a near-infrared (974 nm) laser diode and probed by a red (652 nm) laser was accurately evaluated as a function of the infrared power absorbed by the Yb3+ ions.The green emission generated by the Er3+ ions directly excited by the red laser consists of three major lines (coming from three individual Stark levels in thermal equilibrium) whose intensities were measured according to the absorbed infrared power and the distance between the heated and probed volumes, to evaluate the heating induced by the excitation of Yb3+ and Er3+ ions at 974 nm by applying the Boltzmann's equation linking the populations of emitting levels to the temperature. In the case where the Yb3+ ions excited by the laser diode are situated at a distance of about 0.5 mm from the edge of the crystal and for an absorbed infrared power of 100 mw, the crystal's edge temperature is reaching 80 °C after 20 s of continuous excitation at 974 nm.  相似文献   

8.
Eu3+-doped alkaline-earth tungstates MWO4 (M=Ca2+, Sr2+, Ba2+) were prepared by a polymeric precursor method based on the Pechini process. The polymeric precursors were calcined at 700 °C for 2 h in order to obtain well-crystallized powders and then characterized by X-ray diffraction (XRD), thermogravimetric analysis (TG), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and photoluminescence spectroscopy (PL). All prepared samples showed a pure crystalline phase with scheelite-type structure confirmed by XRD. It was noted that the charge-transfer band shifted from 260 to 283 nm when calcium is replaced by strontium. However, this band was not observed for Eu3+-doped barium tungstate. Upon excitation at 260 nm, the emission spectra are dominated by the red 5D07F2 transition at 618 nm. By analyzing of the emission lines, it was inferred that Eu3+ ions occupy low symmetry sites in the host lattice. It was also found that Eu3+-doped SrWO4 displays better chromaticity coordinates and greater luminescence intensity than the other samples.  相似文献   

9.
A mini eye-safe KTiAsO4 intracavity optical parametric oscillator (IOPO) employing the shared cavity configuration and driven by a diode-end-pumped composite Nd:YAG/Cr4+:YAG laser is demonstrated in this paper. Under an incident laser diode power of 11 W, a maximum average output power of 424 mW at 1534 nm was obtained. The corresponding signal pulse width and repetition rate were 1.2 ns and 16.7 kHz, respectively. The fluctuation of the average signal output power over long-term operation was found to be ±3.0%. A theoretical model for the compact IOPO was also presented in this paper.  相似文献   

10.
Near-infrared excited up-conversion phosphors of RE3+/Yb3+(RE = Ho, Tm) co-doped SrIn2O4 were synthesized by a solid-state reaction method. X-ray diffraction analysis revealed the phase composition of those samples, and the up-conversion spectroscopic properties were studied in terms of up-conversion emission spectra. Under 980 nm near-infrared laser excitation, strong green emission with the peak at 546 nm was observed in SrIn2O4: Ho3+/Yb3+, which can be assigned to the characteristic 5S2(5F4)  5I8 transition of Ho3+. Furthermore, SrIn2O4: Tm3+/Yb3+ showed bright blue emission with the peak at 486 nm, which is associated with the 1G4  3H6 transition of Tm3+. The UC power studies indicated that the luminescence of SrIn2O4: Ho3+/Yb3+ and SrIn2O4: Tm3+/Yb3+ are attributed to two-photon and three-photon process, respectively. The possible UC luminescence mechanism and energy transfer in SrIn2O4: RE3+/Yb3+ were discussed.  相似文献   

11.
The Sr1.56Ba0.4SiO4:0.04Eu2+ phosphors were prepared via a combustion reaction and following the calcination method at low temperature. The influences of the amount of the uncommonly used SrCl2 flux, different calcination temperatures and time on the structure and the photoluminescence (PL) properties of the phosphors were investigated. Under the excitation of 450 nm blue light, the phosphor shows the intense broad emission band from 490 nm to 650 nm, and the emission peak is centered at 553 nm. The luminescence intensity of Sr1.56Ba0.4SiO4:0.04Eu2+ was very sensitive to the crystallinity and morphology characteristics of the phosphor. The phosphor calcined at 950 °C for 3 h in 20%H2/80%Ar atmosphere exhibits improved PL properties due to its high crystallinity and excellent morphology characteristics. The use of the SrCl2 flux provides a novel way to improve the crystallinity of the silicates phosphors at low preparation temperature.  相似文献   

12.
A compact intra-cavity pumped low threshold continuous-wave Ho:Sc2SiO5 laser is reported. The characteristics of output wavelength tuning are investigated by use a intra-cavity briefringent (BF) filter. A wavelength tunable range of 140 nm from 2020 to 2160 nm is achieved. For the free-running mode, the laser slope efficiency is 24.8%, when the output central wavelength is 2110 nm. The laser threshold is about 820 mW of incident pump power. With the BF filter, a maximum output power of 870 mW is obtained at the incident pump power of 5 W, corresponding to a slope efficiency of 20.3%. The characteristics of output wavelength verse the crystal temperature are also investigated.  相似文献   

13.
We present a high-power 1.53 μm laser based on intracavity KTA-OPO driven by diode-end-pumped acousto-optical Q-switched YVO4/Nd:YVO4 composite. The composite crystal was utilized for reducing the thermal effect, and the mode mismatch compensating OPO cavity was designed for efficient OPO conversion. The output power of eye-safe laser at 1535 nm was up to 4.4 W with the pump power of 27 W, corresponding to a diode-to-signal conversion efficiency of 16.3%. To our knowledge, this is the highest output power in diode-end-pumped circumstances. In the experiment, the strong yellow light generated by Raman conversion and frequency doubling in the KTA crystal was observed.  相似文献   

14.
We demonstrate a diode-pumped Nd:YAG ceramic laser with emission at 946 nm that is passively Q-switched by single-crystal Cr4+:YAG saturable absorber. An average output power of 1.7 W is measured under 18.4 W of incident power using an output mirror with transmission T=4%. The corresponding optical-to-optical efficiency is 9.2%. The laser runs at a pulse repetition rate of 120 kHz and delivers pulses with energy of 14 μJ and duration of 80 ns, which corresponds to a peak power of 175 W.  相似文献   

15.
This paper reports the visible luminescence properties of 1D2 state of Tm3 + -doped lead borate titanate aluminumfluoride (LBTAFTm) glasses. The absorption and luminescence was analyzed within the frame work of Judd-Ofelt model. The reliability of J-O intensity parameters obtained from the experimental oscillator strengths have satisfactorily been correlated with the calculated oscillator strengths with small r.m.s deviation of ± 0.12 × 10-6 by the least square fit analysis. Upon 359 nm excitation, the luminescence spectra show only one emission band at 458 nm (blue) corresponding to the 1D2  3 F4 transition in the spectral region 400–500 nm. No luminescence quenching has been observed with the increase of Tm3 + concentration. The decay profiles of the 1D2 level have shown single-exponential nature for all the concentrations and the decay times were found to decrease with the increase of concentration. The stimulated emission cross-section (σe) for the observed emission transition has also been computed. The large quantum efficiency (η) of the 1D2 level suggests the utility of LBTAFTm glass as a potential host for optical device applications at 458 nm emission wavelength.  相似文献   

16.
The new apatite–silicate phosphor doped with Eu ions in Ba10(PO4)4(SiO4)2 matrix was synthesized through solid-state reaction. It was found that the as-synthesized phosphor displayed apparent mixture of band and line emission peaks giving rise to pseudo white light. The narrow emission bands peaking at 410 nm can be assigned to the 4f65d→4f7(8S7/2) transition of Eu2+ ions, and the other band at 507 nm is ascribed to anomalous fluorescent emission. One group of line emission peaking at 595 nm and 613 m were due to the 5D07F1 and 5D07F2 transition of Eu3+ ions. The occurrence of photostimulated luminescence and discrete emission lines in violet (410 nm), green (507 nm) and red (595 nm and 613 nm) colors indicate that this material has potential application in fields of white-light-emitting.  相似文献   

17.
K.N. Shinde  S.J. Dhoble 《Optik》2012,123(21):1975-1979
Dy3+ and Eu2+ activated triple phosphate NaBa0.45Sr0.55PO4 phosphors were prepared by facile combustion synthesis. Excellent emission observed when NaBa0.45Sr0.55PO4:Dy3+ and NaBa0.45Sr0.55PO4:Eu2+ excited at 348 nm and 354 nm wavelength respectively. From a powder X-ray diffraction (XRD) analysis, the formation of compound with a trigonal–hexagonal scalenohedral structure was confirmed. In the photoluminescence spectra, the NaBa0.45Sr0.55PO4:Dy3+ phosphor emits two distinctive colours: a blue band centred at 482 nm and a yellow band at 576 nm originating from Dy3+ whereas NaBa0.45Sr0.55PO4:Eu2+ emits blue colour at 470 nm. Also, surface morphology has been studied by scanning electron microscope (SEM). Phosphors exhibit a strong absorption in the range of 340–400 nm and chromatic properties indicated that present phosphor is a hopeful candidate for near ultra violet light emitting diodes (nUV LEDs).  相似文献   

18.
High-peak-power, short-pulse-width diode pumped 946 nm Nd:YAG laser in passively Q-switching operation with Cr4+:YAG is reported. The highest average output power reaches 3.4 W using the Cr4+:YAG with initial transmissivity T0=95%. When the T0=90% Cr4+:YAG is employed, the maximum peak power of 31.4 kW with a pulse width of 8.3 ns at 946 nm is generated.  相似文献   

19.
We demonstrate the first Cr4+:YAG passively Q-switched c-cut Nd:YVO4 self-Raman laser at 1168.6 nm based on the Stokes shift of 816 cm−1. At the pump power of 4.7 W, the maximum output power of the Stokes line at 1168.6 nm is 270.5 mW, corresponding to an optical conversion efficiency of 5.8%. The pulse width, pulse repetition rate, pulse energy and peak power are 8.8 ns, 35.8 kHz, 7.6 μJ and 0.86 kW, respectively. At the pump of 5.0 W, the Stokes line at 1097.2 nm based on Raman shift of 259 cm−1 also appears.  相似文献   

20.
S.Y. Cheng  Y.G. Wang  Jau Tang  L. Zhang  L. Sun  X.C. Lin  J.M. Li 《Optik》2012,123(14):1279-1281
The pure semiconductor type single wall carbon nanotubes (SWCNT) was transferred on hydrophilic glass substrate to fabricate saturable absorbers by vertical evaporation technique. The recovery time of the absorber is 350 fs. The saturation intensity of the absorber was found to be 115 μJ/cm2 at 1060 nm. The modulation depth of the absorber could be about 7%. Passive mode-locked Nd:YVO4 laser using this kind of absorber was demonstrated. The largest average output power of the mode-locked laser is 1.4 W at the pump power of 7.8 W. The continuous wave mode-locked pulses with the repetition of 80 MHz were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号