首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high polarization Nd:YVO4/KTP laser with dual crossed gain crystal is reported. Using two optical axis orthogonal Nd:YVO4 crystal as gain medium, eliminating the depolarization effect of single Nd:YVO4 crystal, the high polarization green laser is obtained. With 1.8 W diode laser pump power the output power of TEM00 green laser is 366 mW, the light–light conversion efficiency is up to 20.3%, and the polarization ratio is 110:1. This laser has the advantages of being simple and easily attainable at a low cost, and it is suitable for batch production.  相似文献   

2.
X. Yu  R. P. Yan  M. Luo  F. Chen  X. D. Li  J. H. Yu 《Laser Physics》2009,19(10):1960-1963
We demonstrated a diode-end-pumped continuous-wave 914 nm laser using a novel grown-together YVO4/Nd:YVO4 crystal for the first time. A maximum output power at 914 nm of 7.5 W with an optical-optical efficiency of 16.3% and a slope efficiency of 24.3% was obtained when the incident pump power was 46.2 W. The beam quality factor M 2 was 3.2 at the output power of 6.0 W. The quality and specification of the grown-together composite YVO4/Nd:YVO4 crystal should be improved. Meanwhile, energy-transfer upconversion spectrum of the composite YVO4/Nd:YVO4 crystal laser was also investigated.  相似文献   

3.
An LD end-pumped Nd:YAG/SrWO4 continuous-wave 560 nm laser is presented based on intracavity sum-frequency mixing of the fundamental and first-Strokes light. The maximum output power of 330 mW at 559.6 nm was obtained for the diode pump power of 13.7 W and the conversion efficiency was about 2.5%. The intense blue emission was also observed in the SrWO4 crystal when the Raman laser was operating above threshold. This blue emission is centered at 473 nm, which also happened to YVO4.  相似文献   

4.
An eye-safe KTA OPO pumped by a Nd:YLF laser is demonstrated and a comparison with that pumped by a Nd:YVO4 laser is performed. Although the slope efficiency of the continuous-wave free-running Nd:YLF laser is lower than that of the Nd:YVO4 laser, the performance of KTA OPOs pumped by the Q-switched Nd:YLF laser is better, especially at lower repetition rates. The slope efficiency of KTA OPO pumped by a Nd:YLF laser is 14.6% at 30 kHz and 11.04% at 10 kHz. The better energy storage ability of Nd:YLF makes it an excellent laser medium in IOPOs.  相似文献   

5.
In this letter, a diode-pumped continuous-wave and passively Q-switched 1.06 μm laser with a novel composite YVO4/Nd:GdVO4 crystal was demonstrated for the first time. Theoretical calculations showed that the temperature distribution in YVO4/Nd:GdVO4 crystal was lower than that in GdVO4/Nd:GdVO4 and Nd:GdVO4 crystals under the same conditions. After optimizing the mode matching degree, a CW output power of 5.6 W of YVO4/Nd:GdVO4 laser was obtained at the incident pump power of 12 W when the output coupler with transmission of 30% was employed. Using Cr4 +:YAG crystals with initial transmission (T0) of 80% and 90% as saturable absorbers, the pulsed YVO4/Nd:GdVO4 laser characteristics were investigated. At the incident pump power of 12 W, the maximum average output power of 2.76 W and the maximum repetition rate of 189 kHz was achieved when T0 = 90% Cr4 +:YAG was used. The shortest pulse width was 28.1 ns when the initial transmission of the used Cr4 +:YAG was 80%.  相似文献   

6.
We report a low-threshold continuous-wave self-Raman laser with a composite YVO4/Nd:YVO4/YVO4 crystal. The use of the composite crystal can reduce the thermal effects and achieve the low-threshold and high Raman output operation. The Raman threshold is as low as 2.2 W for the 808-nm diode pump. Under the pump of a diode power of 25.5 W, the highest Raman output of 2.8 W is obtained at 1175 nm, corresponding to a slope efficiency of 12% and a diode-to-Stokes optical conversion efficiency of 11%. The power fluctuation is less than 1.1% under the highest Raman output.  相似文献   

7.
S.Y. Cheng  Y.G. Wang  Jau Tang  L. Zhang  L. Sun  X.C. Lin  J.M. Li 《Optik》2012,123(14):1279-1281
The pure semiconductor type single wall carbon nanotubes (SWCNT) was transferred on hydrophilic glass substrate to fabricate saturable absorbers by vertical evaporation technique. The recovery time of the absorber is 350 fs. The saturation intensity of the absorber was found to be 115 μJ/cm2 at 1060 nm. The modulation depth of the absorber could be about 7%. Passive mode-locked Nd:YVO4 laser using this kind of absorber was demonstrated. The largest average output power of the mode-locked laser is 1.4 W at the pump power of 7.8 W. The continuous wave mode-locked pulses with the repetition of 80 MHz were achieved.  相似文献   

8.
A mini eye-safe KTiAsO4 intracavity optical parametric oscillator (IOPO) employing the shared cavity configuration and driven by a diode-end-pumped composite Nd:YAG/Cr4+:YAG laser is demonstrated in this paper. Under an incident laser diode power of 11 W, a maximum average output power of 424 mW at 1534 nm was obtained. The corresponding signal pulse width and repetition rate were 1.2 ns and 16.7 kHz, respectively. The fluctuation of the average signal output power over long-term operation was found to be ±3.0%. A theoretical model for the compact IOPO was also presented in this paper.  相似文献   

9.
We demonstrate the first Cr4+:YAG passively Q-switched c-cut Nd:YVO4 self-Raman laser at 1168.6 nm based on the Stokes shift of 816 cm−1. At the pump power of 4.7 W, the maximum output power of the Stokes line at 1168.6 nm is 270.5 mW, corresponding to an optical conversion efficiency of 5.8%. The pulse width, pulse repetition rate, pulse energy and peak power are 8.8 ns, 35.8 kHz, 7.6 μJ and 0.86 kW, respectively. At the pump of 5.0 W, the Stokes line at 1097.2 nm based on Raman shift of 259 cm−1 also appears.  相似文献   

10.
分析了Nd:YVO4激光器实现双波长运转及腔内和频的条件,利用一种LD泵浦Nd:YVO4晶体产生1 064 nm和914 nm双波长激光束,采用一个线性平凹腔结构,利用腔内Ⅰ类临界相位匹配LBO和频,获得了连续波输出的全固态激光器。实验采用端面结构,在5.0 W的808 nm泵浦功率下,获得了最高功率为2.5 mW连续波TEM00的激光输出,光-光转换效率为0.05%。  相似文献   

11.
We report two kinds of compact and efficient diode-end-pumped TEM00 lasers with output power >25 W at ≈50 W of incident pump power. One laser consists of a single 0.3 at. % Nd:YVO4 crystal in a V-type cavity, the other laser includes two 0.5 at. % Nd:YVO4 crystals in a linear cavity. Experimental results show that lowering Nd3+ concentration can be beneficial in extending the fracture-limited pump power but it also increases the sensitivity of the pump wavelength due to the overlapping efficiency. Received: 19 February 2000 / Revised version: 30 May 2000 / Published online: 20 September 2000  相似文献   

12.
We present a simple and compact continuous-wave (CW) 1176 nm laser based on self-frequency Raman conversion in continuous-grown YVO4/Nd:YVO4 composite crystal. With a composite crystal 30 mm in length, a maximum output power up to 1.84 W was achieved at the incident diode pump power of 23.6 W. Corresponding to overall optical conversion, the efficiency was 7.8% and the slope efficiency was 8.5%. The conversion efficiency has been doubled compared with the conventional Nd:YVO4 CW self-frequency Raman laser. The excellent performance of this laser shows that the long continuous-grown YVO4/Nd:YVO4 composite crystal is promising in the application of CW Raman lasers and ideal for miniaturization.  相似文献   

13.
A diode-end-pumped composite YVO4/Nd:YVO4/YVO4 crystal self-Raman laser at the second-Stokes wavelength of 1,764 nm is demonstrated. The maximum average output power of second-Stokes radiation was up to 0.99 W at a pump power of 34 W and a pulse repetition frequency of 20 kHz, corresponding to an optical conversion efficiency of 2.9 %. The highest peak power and the shortest pulse duration were 21.5 kW and 1.92 ns, respectively.  相似文献   

14.
We report a highly-efficient, high-power, single-frequency Nd:YVO4 master-oscillator power-amplifier with near-diffraction-limited output beam quality. A diode-pumped Nd:YVO4 ring laser incorporating a passive method for suppressing axial-mode-hopping was employed as the master-oscillator, and was amplified by a three-stage diode-end-pumped Nd:YVO4 amplifier, yielding 79 W of output with an extraction efficiency of 29%. The overall power gain was 15 dB for an input power from the master-oscillator of 2.4 W, and the M2 parameter was less than 1.5 at the maximum power. The prospects for a further increase of power and brightness via this approach are considered. PACS 42.55.Xi; 42.60.Da; 42.60.Jf  相似文献   

15.
Thermal effect control is critical to scale the output power of diode end-pumping solid lasers to several watts up and beyond. Diffusion bonding crystal has been demonstrated to be an effective method to relieve the thermal lens for the end-pumping laser crystal. The temperature distribution and thermal lens in Nd:YVO4/YVO4 composite crystal was numerically analyzed and compared with that of Nd:YVO4 crystal in this paper. The end-pumping Nd:YVO4/YVO4 composite crystal laser was set up and tested with z cavity. The maximum output power of 9.87 W at 1064 nm and 6.14 W at 532 nm were obtained at the pumping power of 16.5 W. The highest optical-optical conversion efficiencies were up to 60% at 1064 nm and 40% at 532 nm, respectively.  相似文献   

16.
For Nd:LaxY1−xVO4 (x = 0.11) crystal, the 4F3/2  4I13/2 transition property was investigated for the first time. The fluorescence peak of Nd:La0.11Y0.89VO4 crystal exhibited obvious inhomogeneous broadening comparing with that of Nd:YVO4 crystal. With laser diode array as pump source, 1.34 μm continuous-wave (CW) and active Q-switched laser operations based on 4F3/2  4I13/2 transition were realized. For CW laser operation, the maximum output power of 2.47, 2.13 W is obtained with slope efficiencies of 29.4%, 27.6%, and optical to optical conversion efficiency of 26.2%, 24.7%, respectively for a, c cut crystal samples. For acousto-optic (AO) Q-switched laser operation, the shortest pulse width, highest peak power and maximum pulse energy came from the a-cut sample, which were 13 ns, 2.69 kW and 35 μJ, respectively.  相似文献   

17.
Z. Zhao  Y. Dong  C. Liu  M. Hu  Z. Xiang  J. Ge  J. Chen 《Laser Physics》2009,19(11):2069-2072
A effective continuous-wave (CW), high power laser generated using a YVO4/Nd:YVO4 composite crystal is presented. 18.8 W output power in multi-mode has been achieved with a maximum absorbed pump power of 31.2 W, corresponding to an optical-to-optical efficiency of 60.26%. In TEM00 mode operation, 15.1 W output power also has been achieved with the maximum absorbed pump power of 31.2 W, corresponding to an optical-to-optical efficiency of 47.69%. With a 200 mm focal-length positive lens and using the moving knife-edge method, the beam quality factor is measured to be M2 = 1.2 for TEM00 mode beam.  相似文献   

18.
A line tunable singly resonant noncritically phase matched narrow band width ZnGeP2 (ZGP) optical parametric oscillator pumped by the output idler radiation from a KTA OPO based on a 20 mm long KTA crystal pumped from a Q-switched Gaussian shaped Nd:YAG laser beam with a grating having grooves density 85 lines/mm has been demonstrated in the spectral ranges of 3–7 μm. The measured threshold of oscillation energy was 10 μJ. The conversion efficiency was 20.5% and slope efficiency of the ZGP OPO was 20% using a 23 mm long ZGP crystal at 26 mm cavity length. Line width of the generated infrared radiation from ZGP OPO was 37–60 nm.  相似文献   

19.
We report a continuous-wave intracavity Raman laser at 1179.5 nm with a SrWO4 Raman crystal in a diode-end-pumped Nd:YVO4 laser. The highest output power of 2.23 W is obtained at the laser diode power of 21.2 W corresponding to the slope efficiency of 17.3% and a diode-to-stokes optical conversion efficiency of 10.5%. The dependence of the Raman laser performance on the pump polarization is also studied. The measured Raman thresholds are about 9.3 and 8.3 W in the diode pump laser power for the a- and b-polarized configurations, respectively. The Raman gain coefficients of the c-cut SrWO4 crystal for a- and b-polarized pumps are estimated to be about 4.9 and 4.7 cm/GW, respectively.  相似文献   

20.
Diode-pumped passively mode-locked Nd:Lu0.15Y0.85VO4 laser with a single-walled carbon nanotube saturable absorber was demonstrated for the first time, to our best knowledge. The laser generated 19-ps pulses with maximum output power of 902 mW for the incident pump power of 6.5 W at the central wavelength of 1064 nm, giving an optical conversion efficiency of 14%. The continuous wave mode-locking conditions of single-walled carbon nanotube saturable absorber were analyzed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号