首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The measurement of the spectral width of ultrashort light pulses using a Fabry–Pérot interferometer (FPI) is investigated. It is shown, numerically and experimentally, that the measured width critically depends on the pulse properties (such as pulse shape, pulse duration, frequency chirp and wavelength) and on the properties of the FPI (such as the mirror spacing and the mirror reflectivities). The obtained results are of particular importance if the spatial length of the short light pulses is comparable or even shorter than the distance between the FPI mirrors. The derived guideline indicate that the actual spectral width of the ultrashort light pulses is measured with good accuracy only if the finesse F≥40 and the round trip time of the light pulses inside the Fabry–Pérot interferometer is approximately one to three times the pulse duration. Received: 17 December 1999 / Revised version: 14 April 2000 / Published online: 5 July 2000  相似文献   

2.
The development of dynamic single-electron sources has made it possible to observe and manipulate the quantum properties of individual charge carriers in mesoscopic circuits. Here, we investigate multi-particle effects in an electronic Mach–Zehnder interferometer driven by a series of voltage pulses. To this end, we employ a Floquet scattering formalism to evaluate the interference current and the visibility in the outputs of the interferometer. An injected multi-particle state can be described by its first-order correlation function, which we decompose into a sum of elementary correlation functions that each represent a single particle. Each particle in the pulse contributes independently to the interference current, while the visibility (given by the maximal interference current) exhibits a Fraunhofer-like diffraction pattern caused by the multi-particle interference between different particles in the pulse. For a sequence of multi-particle pulses, the visibility resembles the diffraction pattern from a grid, with the role of the grid and the spacing between the slits being played by the pulses and the time delay between them. Our findings may be observed in future experiments by injecting multi-particle pulses into a Mach–Zehnder interferometer.  相似文献   

3.
Hai-Long Liu 《中国物理 B》2022,31(11):110306-110306
A single-photon interferometer is a fundamental element in quantum information science. In most previously reported works, single-photon interferometers use an active feedback locking system to stabilize the relative phase between two arms of the interferometer. Here, we use a pair of beam displacers to construct a passively stable single-photon interferometer. The relative phase stabilization between the two arms is achieved by stabilizing the temperature of the beam displacers. A purely polarized single-photon-level pulse is directed into the interferometer input port. By analyzing and measuring the polarization states of the single-photon pulse at the output port, the achieved polarization fidelity of the interferometer is about 99.1 ±0.1%. Our passively stabilized single-photon interferometer provides a key element for generating high-fidelity entanglement between a photon and atomic memory.  相似文献   

4.
The physical conditions needed to observe the effects of longitudinal spatial coherence of emission of an extended thermal source are considered. Results of experiments on observation of interference pulses of longitudinal spatial coherence, performed using a scanning longitudinal shearing Michelson interferometer, are presented. Distinctions between the effects of temporal and longitudinal spatial coherence of light are established. It is shown that the presence of a noncompensated optical layer in one of the arms of the interferometer makes the interference pulses of the temporal and spatial coherence of light shift relative to each other (“recession”).  相似文献   

5.
An acoustic pulse propagating on a two-mode fiber can act as a beam splitter in a scanning interferometer. When this device is employed in white-light interferometry, the effects of distributed coupling and dispersive interferometer arms need to be considered. A theory suitable for treating acousto-optic interaction of partially coherent light in a moving interaction region was developed. It was found that differential optical dispersion should be negligible and the acoustic pulse length short. Also the coherence time should be short but long compared to the intermodal group delay difference over a pulse length. Experiments with long acoustic pulses were performed, and fairly good agreement with theory was obtained.  相似文献   

6.
Modulation instability can be used to convert a continuous light wave into a train of pulses on a constant background. It is a longstanding discussion whether these pulses can be converted into solitons. We clarify the situation by using a more general mathematical context, invoking the Akhmediev breather, Peregrine soliton and Kuznetsov-Ma soliton solutions of the wave equation, and suggest the use of a Mach–Zehnder interferometer to remove the background. Expressions for the pulse widths and peak powers thus obtained are presented, and their soliton content is determined. It turns out that more than 95 % of each pulse’s energy can be converted to a soliton.  相似文献   

7.
The paper investigates the non-linear behavior of semiconductor optical amplifier with Mach–Zehnder interferometer (SOA-MZI) configuration which makes it to work as a logic gate. The two designs of NOR gate based on SOA-MZI have been verified. The basic principal of both designs are same. The summation of data pulses have been taken and inverted to perform a NOR operation. In the design, the first 3 dB coupler creates a phase difference of π/2 in clock pulse and data pulse while passing through two interferometer arms. The clock and data pulses pass through SOA which attenuates the clock pulse wherever the data pulse is present. After passing through second 3 dB coupler a phase difference of π/2 is again created. Therefore, if the clock pulse is in the same phase will be added and if it is out of phase, will be canceled. The designs have been investigated at different bit-rates to achieve higher extinction ratio (ER), Q-factor and bit-error rate (BER) for different pump currents of SOA.  相似文献   

8.
不同序列拉曼光脉冲对原子重力仪灵敏度的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
任利春  周林  李润兵  刘敏  王谨  詹明生 《物理学报》2009,58(12):8230-8235
研究了不同序列拉曼光脉冲对原子重力仪灵敏度的影响.结果表明,通过调节脉冲间隔可以改善原子干涉重力仪的灵敏度.在标准配置下,只考虑重力及一阶重力梯度时,三脉冲序列(π/2-π-π/2)的原子干涉重力仪具有较大的灵敏度,四脉冲序列(π/2-π-π-π/2)的原子干涉重力仪对重力不敏感,可用来测量重力梯度,五脉冲作用会降低原子干涉重力仪的灵敏度. 关键词: 原子重力仪 拉曼激光脉冲序列 灵敏度  相似文献   

9.
We present an analytical and experimental study of a novel confocal optical pulse stretcher (COPS). The simple and passive pulse stretcher consists of two concave mirrors and a scraper beam-splitter and its optical configuration ensures a perfect spatial overlapping of laser pulses at the beam-splitter. The pulse stretcher is compact and suitable for laser pulses of large divergences. The confocal optical pulse stretcher is demonstrated on a pulsed copper vapour laser to convert a 40 ns (1/e2 % points) pulse into a 55 ns with reduction of peak power by a factor of 1.375 without loss of pulse energy.  相似文献   

10.
黄沛  方少波  黄杭东  侯洵  魏志义 《物理学报》2018,67(24):244204-244204
相干合成技术是超快光学领域的重要研究方向之一.当单路脉冲激光的连续谱超过一个倍频程时,精确控制其光谱相位(色散管理)是获得亚周期超短脉冲激光的关键.由于常见的脉冲压缩系统存在光谱带宽限制,因此多通道相干合成技术受到了广泛的关注.本文将充气空心光纤展宽后的超倍频程连续光谱分波段独立压缩,并利用平衡光学互相关方法锁定子脉冲之间的相位延迟,获得了4.1 fs的合成脉冲.实验结果表明相干合成技术在高能量亚周期超快光场调控中存在优势.  相似文献   

11.
Bao X  Wan Y  Zou L  Chen L 《Optics letters》2005,30(8):827-829
Because of the power imbalance between the two arms of an interferometer in an electro-optic modulator (EOM), the output of the EOM is combined amplitude modulation (AM) and phase modulation (PM) for the probe signal consisting of the pulse and the dc component. Because of this PM, the Brillouin gain-loss spectrum becomes asymmetric. The central Brillouin frequency is shifted from that of an AM pulse. The maximum extinction ratio of the EOM is limited to approximately 29 dB for a power-splitting ratio of 51% to 49%. The asymmetric property induced by PM is not pulse shape dependent; for both Gaussian- and super-Gaussian-shaped pulses the Brillouin loss spectrum is symmetric for AM and asymmetric for combined AM and PM (power imbalance).  相似文献   

12.
黄沛  方少波  黄杭东  赵昆  滕浩  侯洵  魏志义 《物理学报》2018,67(21):214202-214202
操控多路激光脉冲之间的相对延时(相对相位)对于亚周期相干合成技术意义重大.当周期量级脉冲之间的相对延时接近数十飞秒时,常见的飞秒脉冲测量手段已无法满足脉冲之间相对相位的精确调控需求.本文基于瞬态光栅频率分辨光学开关装置,精确反演出脉冲之间的相对相位.此方案不仅有助于直接产生亚周期(亚飞秒)脉冲,还可应用于时间隐身学和二维相干光谱学等相关领域.  相似文献   

13.
A diode-pumped passively mode-locked Yb:CTGG disordered crystal laser has been demonstrated for the first time to our knowledge. With a semiconductor saturable absorber mirror for passive mode locking and two Gires–Tournois interferometer mirrors for dispersion compensation, pulses as short as 389 fs at a repetition rate of 45 MHz were obtained at the central wavelength of 1,037.8 nm. The maximum average power was 420 mW, corresponding to pulse energy of 9.3 nJ and peak power of 24 kW.  相似文献   

14.
Light pulses have proven to be a powerful and versatile tool to implement beam splitters and mirrors for matter waves enabling atom interferometers. However, for high‐precision measurements with such devices the specific realization is crucial and novel techniques might increase the sensitivity. To illustrate the diversity of light‐pulse beam splitting and the subtle differences between the diffraction mechanisms, we study atomic Raman, Bragg, and the new method of double Bragg diffraction in a coherent way. Moreover, we introduce a versatile formalism to determine the interference signal of a Mach‐Zehnder geometry and give an interpretation in terms of proper‐time difference. In addition, we explore the feasibility of a specular mirror for atoms, which might lead to an interferometer testing the equivalence principle.  相似文献   

15.
Xie C  Liu B  Niu H  Song Y  Li Y  Hu M  Zhang Y  Shen W  Liu X  Wang C 《Optics letters》2011,36(21):4149-4151
We report on a femtosecond nonlinear amplification fiber laser system using a vector-dispersion compressor, which consists of a transmission grating pair and multipass cell based Gires-Tournois interferometer mirrors. The mirror is designed with nearly zero group-delay dispersion and large negative third-order dispersion. As a result, the third-order dispersion of the compressor can be adjusted independently to compensate the nonlinear phase shift of amplified pulses to reduce the pulse pedestal. With this scheme, the system outputs 44 fs laser pulses with little wing at 26.6 W output average power and 531 nJ pulse energy, corresponding to 10.8 MW peak power.  相似文献   

16.
根据钛宝石激光器的要求,实验设计了中心波长800 nm带宽200 nm的啁啾镜,在700—900 nm波长范围内提供约-60 fs2群延迟色散(group delay dispersion,GDD).采用双射频离子束溅射方法进行制备,用实验室搭建的白光干涉仪进行色散性能测试,从测试结果可以看出,制备的啁啾镜的性能和设计值符合得比较好.制备得到的非成对啁啾镜在钛宝石激光谐振腔中进行色散补偿,锁模后分别获得了12 fs和9.5 fs的激光脉冲输出.这是目前报道的使用国产啁啾镜获得的最短的 关键词: 啁啾镜 群延迟色散 色散补偿 钛宝石激光器  相似文献   

17.
We report a compact thin-disk Yb:KYW regenerative amplifier system. Two different concepts are investigated to obtain either subpicosecond pulses with up to 160 μJ or a pulse energy of 20 μJ with a pulse width of about 300 fs. The first concept uses intra-cavity group-velocity dispersion compensation with Gires–Tournois interferometer mirrors to avoid pulse stretching during amplification. The onset of nonlinear effects in this concept inhibits the generation of shorter pulse durations at this energy level. Shorter pulses can be achieved with the second concept, which is based on dispersive pulse stretching during amplification and uses pulse compression after amplification with a grating compressor. Repetition rates up to 45 kHz are demonstrated.This revised version was published online in May 2005. The Article Category was removed.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

18.
We present a new method for the measurement of the phase of ultrashort optical pulses with high spectral resolution. This employs an interferometer with a monochromator in one arm. Two detectors operating in single photon and two-photon absorption regimes monitor the output from the interferometer. Comparison of the signals from the two detectors gives a measurement of the phase of the light pulse. The principles underpinning this technique are discussed and the experimental application to picosecond pulses is demonstrated.  相似文献   

19.
The performance of a semiconductor laser diode that has an asymmetric Mach–Zehnder interferometer all-optical switch in the cavity has been studied experimentally. This novel device was designed to be free from clock pulse insertion, since mode-locked optical pulses are generated internally and change the balance of the interferometer periodically. The device was fabricated using a InGaAsP/InP buried heterostructure and the primary optical properties of the device were investigated. Lasing characteristics that were peculiar to the twin-cavity structure were observed, i.e., continuous-wave lasing power oscillation in relation to the injection current balance between the two arms, and cyclic changes in the single/multiple emission peaks as a function of bias voltage at the saturable absorber. Electrical spectrum analysis indicated 40 GHz modulation of lasing output from the twin-cavity laser.  相似文献   

20.
We describe, and present experimental evidence to support, a new technique capable of producing sufficient frequency displacement and bandwidth compression to permit near perfect coincidence in frequency and width between the output of a CO2-TEA laser and a Doppler broadened absorption line. This is accomplished by replacing one of the laser end mirrors with a Michelson interferometer that is adjusted for destructive interference and by placing the absorbing gas in one of its arms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号