首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maryam Ebrahimi 《Surface science》2009,603(9):1203-5808
Competition between the CC functional group with the OH group in allyl alcohol and with the CO group in allyl aldehyde in the adsorption and thermal chemistry on Si(1 0 0)2×1 has been studied by X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD), as well as density-functional theory (DFT) calculations. The similarities found in the C 1s and O 1s spectra for both molecules indicate that the O-H dissociation product for allyl alcohol and [2 + 2] CO cycloaddition product for allyl aldehyde are preferred over the corresponding [2 + 2] CC cycloaddition products. Temperature-dependent XPS and TPD studies further show that thermal evolution of these molecules gives rise to the formation of ethylene, acetylene, and propene on Si(1 0 0)2×1, with additional CO evolution only from allyl alcohol. The formation of these desorption products also supports that the [2 + 2] CC cycloaddition reaction does not occur. In addition, the formation of SiC at 1090 K is observed for both allyl alcohol and allyl aldehyde. We propose plausible surface-mediated reaction pathways for the formation of these thermal evolution products. The present work illustrates the crucial role of the Si(1 0 0)2×1 surface in selective reactions of the Si dimers with the O−H group in allyl alcohol and with the CO group in allyl aldehyde over the CC functional group common to both molecules.  相似文献   

2.
The adsorption and reaction of vinyl acetate with the clean Pd(1 1 0) surface has been investigated using temperature programmed desorption and molecular beam reaction measurements. These show that, under low pressure conditions, the main reaction pathway above 400 K is total dehydrogenation to yield hydrogen and carbon dioxide in the gas phase, and surface carbon. This occurs at a steady state, notwithstanding the fact that carbon is being deposited continuously onto the surface. The reaction continues because the vast majority of this carbon is lost from the surface to the bulk of the sample. Between about 320-380 K the reaction profile is somewhat different; the molecule dissociates at the CH3COOCHCH2 bond, producing the most stable intermediate, the acetate, and the reaction stops after the build-up of adsorbed acetate and surface carbonaceous species. At ∼300 K, the products are very similar to those for acetaldehyde adsorption (namely, methane, CO and some surface carbon), and they evolve in a non-steady state manner due to the build up of adsorbed CO on the surface. Thus the mechanism is dominated here by dissociation at the CH3COOCHCH2 bond, and formation of the acetyl intermediate. Consideration is given to the connection between these data and vinyl acetate synthesis.  相似文献   

3.
The adsorption properties of CO on the epitaxial five-monolayer Co/Cu(1 0 0) system, where the Co overlayer has stabilized in the metastable fcc-phase, are reported. This system is known to exhibit metallic quantum well (MQW) states at energies 1 eV or greater above the Fermi level, which may influence CO adsorption. The CO/fcc-Co/Cu(1 0 0) system was explored with low energy electron diffraction (LEED), inverse photoemission (IPE), reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). Upon CO adsorption, a new feature is observed in IPE at 4.4 eV above EF and is interpreted as the CO 2π level. When adsorbed at room temperature, TPD exhibits a CO desorption peak at ∼355 K, while low temperature adsorption reveals additional binding configurations with TPD features at ∼220 K and ∼265 K. These TPD peak temperatures are correlated with different C-O stretch vibrational frequencies observed in the IR spectra. The adsorption properties of this surface are compared to those of the surfaces of single crystal hcp-Co, as well as other metastable thin film systems.  相似文献   

4.
A.P. Farkas 《Surface science》2007,601(1):193-200
The adsorption, desorption and dissociation of ethanol have been investigated by work function, thermal desorption (TPD) and high resolution electron energy loss (HREELS) spectroscopic measurements on Mo2C/Mo(1 0 0). Adsorption of ethanol on this sample at 100 K led to a work function decrease suggesting that the adsorbed layer has a positive outward dipole moment By means of TPD we distinguished three adsorption states, condensed layer with a Tp = 162 K, chemisorbed ethanol with Tp = 346 K and irreversibly bonded species which decomposes to different compounds. These are hydrogen, acetaldehyde, methane, ethylene and CO. From the comparison of the Tp values with those obtained following their adsorption on Mo2C it was inferred that the desorption of methane and ethylene is reaction limited, while that of hydrogen is desorption limited process. HREEL spectra obtained at 100 K indicated that at lower exposure ethanol undergoes dissociation to give ethoxy species, whereas at high exposure molecularly adsorbed ethanol also exists on the surface. Analysis of the spectral changes in HREELS observed for annealed surface assisted to ascertain the reaction pathways of the decomposition of adsorbed ethanol.  相似文献   

5.
The adsorption of NH3 molecule on the Si(1 1 1)-7 × 7 surface modelled with a cluster has been studied using density functional theory (DFT). The results indicate the existence of a precursor state for the non-dissociative chemisorption. The active site for the molecular chemisorption is the adatom; while the NH3 molecule adsorbs on the Si restatom via this preadsorbed state, the adsorption on the Si adatom is produced practically without an energy barrier. The ammonia adsorption on the adatom induces an electron transfer from the dangling bond of this atom to the dangling bond of the adjacent Si restatom, hindering this site for the adsorption of a second NH3 incoming molecule. However, this second molecule links strongly by means of two H-bonds. The dissociative chemisorption process was studied considering one and two ammonia molecules. For the dissociation of a lonely NH3 molecule an energy barrier of ∼0.3 eV was calculated, yielding NH2 on the adatom and H on the restatom. When two molecules are adsorbed, the NH3-NH3 interaction yields the weakening of a N-H bond of the ammonia molecule adsorbed closer the Si surface. As a consequence, the dissociation barrier practically disappears. Thus, the presence of a second NH3 molecule at the adatom-restatom pair of the Si(1 1 1)-7 × 7 surface makes the dissociative reaction self-assisted, the total adsorption process elapsing with a negligible activation barrier (less than 0.01 eV).  相似文献   

6.
J.M.R. Muir  H. Idriss 《Surface science》2009,603(19):2986-2990
The reaction of formamide over the (0 1 1) faceted TiO2(0 0 1) surface has been studied by Temperature Programmed Desorption (TPD) and X-ray Photoelectron Spectroscopy (XPS). Two main reactions were observed: dehydration to HCN and H2O and decomposition to NH3 and CO. The dehydration reaction was found to be three to four times larger than the decomposition at all coverages. Each of these reactions is found to occur in two temperature domains which are dependent upon surface coverage. The low temperature pathway (at about 400 K) is largely insensitive to surface coverage while the high temperature pathway (at about 500 K) shifts to lower temperatures with increasing surface coverage. These two temperature pathways may indicate two adsorption modes of formamide: molecular (via an η1(O) mode of adsorption) and dissociative (via an η2(O,N) mode of adsorption). C1s and N1s XPS scans indicated the presence of multiple species after formamide absorption at 300 K. These occurred at ca. 288.5 eV (-CONH-) and 285 eV (sp3/sp2 C) for the C1s and 400 eV-(NH2), 398 eV (-NH) and 396 eV (N) for the N1s and result from further reaction of formamide with the surface.  相似文献   

7.
Feng Gao 《Surface science》2007,601(15):3276-3288
The adsorption of alanine is studied on a Pd(1 1 1) surface using X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD). It is found that alanine adsorbs into the second and subsequent layers prior to completion of the first monolayer for adsorption at ∼250 K, while at ∼300 K, alanine adsorbs almost exclusively into the first monolayer with almost no second-layer adsorption. Alanine adsorbs onto the Pd(1 1 1) surface in its zwitterionic form, while the multilayer contains about 30-35% neutral alanine, depending on coverage. Alanine is thermally stable on the Pd(1 1 1) surface to slightly above room temperature, and decomposes almost exclusively by scission of the CCOO bond to desorb CO2 and CO from the COO moiety, and the remaining fragment yields ethylamine and HCN.  相似文献   

8.
The diamond (1 0 0) surface with amino terminations is investigated based on density function theory within the generalized gradient approximation. Our calculated negative electron affinity of diamond (1 0 0) surface with hydrogen termination provides a necessary condition for initiating radical reaction. The results display that the ammonia molecule can form stable C-N covalent bonds on the diamond surface. In addition, due to the lower adsorption energy of one amino group binding on diamond surface, single amino group (SAG) model is easy to be realized in experiment with the comparison of double amino group (DAG) model. The adsorbed ammonia molecule will induce acceptor-like gap states with little change of the valence and conduction band of diamond in SAG model. The adsorption mechanism in the formation of ammonia monolayer on H-terminated diamond (1 0 0) surface, and two possible adsorption structures (SAG and DAG) were especially studied.  相似文献   

9.
Zhipeng Chang 《Surface science》2007,601(9):2005-2011
Methanethiol adsorbed on Ru(0 0 0 1)-p(2 × 2)O has been studied by TPD and XPS. The dissociation of methanethiol to methylthiolate and hydrogen at 90 K is evidenced by the observation of hydroxyl and water. The saturation coverage of methylthiolate is ∼0.15 ML, measured by both XPS and TPD. A detailed analysis suggests that only the hcp-hollow sites have been occupied. Upon annealing the surface, water and hydroxyl desorb from the surface at ∼210 K. Methylthiolate decomposes to methyl radical and atomic sulphur via C-S cleavage between 350 and 450 K. Some methyl radicals (0.05 ML) have been transferred to Ru atoms before they decompose to carbon and hydrogen. The rest of methyl radicals desorb as gaseous phase. No evidence for the transfer of methyl radical to surface oxygen has been found.  相似文献   

10.
Haibo Zhao 《Surface science》2009,603(23):3355-12149
The influence of hydrogen coadsorption on hydrocarbon chemistry on transition metal surfaces is a key aspect to an improved understanding of catalytic selective hydrogenation. We have investigated the effects of H preadsorption on adsorption and reaction of 1,3-butadiene (H2CCHCHCH2, C4H6) on Pt(1 1 1) surfaces by using temperature-programmed desorption (TPD) and Auger electron spectroscopy (AES). Preadsorbed hydrogen adatoms decrease the amount of 1,3-butadiene chemisorbed on the surface and chemisorption is completely blocked by the hydrogen monolayer (saturation) coverage (θH = 0.92 ML). No hydrogenation products of reactions between coadsorbed H adatoms and 1,3-butadiene were observed to desorb in TPD experiments over the range of θH investigated (θH = 0.6-0.9 ML). This is in strong contrast to the copious evolution of ethane (CH3CH3, C2H6) from coadsorbed hydrogen and ethylene (CH2CH2, C2H4) on Pt(1 1 1). Hydrogen adatoms effectively (in a 1:1 stoichiometry) remove sites from interaction with chemisorbed 1,3-butadiene, but do not affect adjacent sites. The adsorption energy of coadsorbed 1,3-butadiene is not affected by the presence of hydrogen on Pt(1 1 1). The chemisorbed 1,3-butadiene on hydrogen preadsorbed Pt(1 1 1) completely dehydrogenates to H2 and surface carbon upon heating without any molecular desorption detected, which is identical to that observed on clean Pt(1 1 1). In addition to revealing aspects of site blocking that should have broad implications for hydrogen coadsorption with hydrocarbon molecules on transition metal surfaces in general, these results also provide additional basic information on the surface science of selective catalytic hydrogenation of butadiene in butadiene-butene mixtures.  相似文献   

11.
We have studied desorption kinetics of deuterium molecules from a Si(1 0 0) surface by means of temperature-programmed desorption (TPD) spectra and isothermal desorptions.Three desorption components, denoted as β1,A,β1,B, and C, can be distinguished in semi-logarithmic plots of the TPD spectra.Their peak positions and intensities are strongly affected by the surface preparation methods employed, either with or without annealing to control the initial D coverage .Peak C appears at the leading edge of the TPD peak.It accounts for only about 5% of the TPD peak at and it diminishes rapidly with decreasing , vanishing at .In contrast, together the β1,A and β1,B peaks account for the whole TPD peak at any less than 1.0 ML. The maximum of the β1,A peak is nearly constant at around the maximum temperature of the TPD peak.On the other hand, the β1,B peak appears on the high-temperature side of the TPD peak and it systematically shifts to higher temperatures with decreasing .These results imply that first- and second-order kinetics are operating for the β1,A and β1,B desorptions, respectively.Isothermal desorption experiments confirm the above predicted kinetics for a limited region, namely .From the results for the rate curve analysis, the desorption barriers are evaluated to be 1.6 ± 0.1 eV and 1.8 ± 0.1 eV for the β1,A and β1,B desorptions, respectively.These values are substantially lower than the widely accepted value of ∼2.5 eV. To reproduce the measured TPD spectra we take the Arrhenius-type rate equation containing the first- and second-order rate terms for the β1,A and β1,B desorptions.The TPD spectra measured for can be reasonably fit with the proposed rate equation when the values given above for Ed,A and Ed,B are used. For , however, the TPD curves are not fit with the same values; rather, the best-fit curves require values for Ed,A and Ed,B larger than those given above. Combining the present kinetics results with those obtained by STM along with the studies, the β1,A and β1,B peaks may be attributed to desorption along the 2H path, while peak C may be attributed to desorption along the 4H path. The atomistic desorption mechanism as well as the energy relationship between the desorption barrier and isosteric heat of adsorption are discussed.  相似文献   

12.
By means of cluster models coupled with density functional theory, we have studied the hydroboration of the Ge(1 0 0)-2 × 1 surface with BH3. It was found that the Ge(1 0 0) surface exhibits rather different surface reactivity toward the dissociative adsorption of BH3 compared to the C(1 0 0) and Si(1 0 0) surfaces. The strong interaction still exists between the as-formed BH2 and H adspeices although the dissociative adsorption of BH3 on the Ge(1 0 0) surface occurs readily, which is in distinct contrast to that on the C(1 0 0) and Si(1 0 0) surfaces. This can be understood by the electrophilic nature of the down Ge atom, which makes it unfavourable to form a GeH bond with the dissociating proton-like hydrogen. Alternatively, it can be attributed to the weak proton affinity of the Ge(1 0 0) surface. Nevertheless, the overall dissociative adsorption of BH3 on group IV semiconductor surfaces is favourable both thermodynamically and kinetically, suggesting the interesting analogy and similar diversity chemistry of solid surface in the same group.  相似文献   

13.
S.H. Xu  Z.H. He 《Applied Surface Science》2007,253(23):9221-9227
The room temperature (RT) adsorption and thermal evolution of cis- and trans-dichloroethylene (DCE) and their structural isomer, iso-DCE, on Ni(1 0 0) have been studied by vibrational electron energy loss spectroscopy (EELS), Auger electron spectroscopy (AES) and thermal desorption spectrometry (TDS). For RT adsorption, both cis- and trans-DCE exhibit very similar EELS features that are different from those found for iso-DCE. These differences indicate the formation of different fragments upon RT adsorption. In particular, the primary adspecies for cis- and trans-DCE are ethane-1,1,2,2-tetrayl () and acetylide-like () adspecies along with a small amount of chlorovinyl adspecies, while ethylylidyne () is the more plausible adspecies for iso-DCE. The differences in the adstructures upon dissociative adsorption at RT underline the important isomeric effects. Furthermore, both AES and TDS results for all three DCE isomers show that most of the Cl atoms produced by dechlorination remain on the surface and its surface concentration remains unchanged upon annealing the samples above 500 K. Upon further annealing to 550 K, the EELS spectra of all three isomers exhibit a broad feature near 1600 cm−1, which suggests the formation of carbon clusters on the surface. The presence of surface Cl atoms therefore appears to prevent the CC bond cleavage during thermal evolution of the adspecies on Ni(1 0 0).  相似文献   

14.
Zhenhua He 《Surface science》2006,600(3):514-526
The room-temperature adsorption and thermal evolution of iso-, cis- and trans-dichloroethylene (DCE) on Si(1 1 1)7 × 7 have been studied by vibrational electron energy loss spectroscopy and thermal desorption spectrometry (TDS). The presence of the Si-Cl stretch at 510 cm−1 suggests that, upon adsorption, all three isomers dissociate via C-Cl bond breakage on the 7 × 7 surface to form mono-σ bonded chlorovinyl , which could, in the case of iso-DCE, further dechlorinate to vinylidene (:CCH2) upon insertion into the back-bond. The higher saturation exposure for the Si-Cl stretch at 510 cm−1 observed for cis- and trans-DCE than iso-DCE suggests that Cl dissociation via the CHCl group in the cis and trans isomers is less readily than the CCl2 group in iso-DCE. Our TDS data show remarkable similarities in both molecular desorption near 360 K and thermal evolution of the respective adstructures for all three isomers on Si(1 1 1)7 × 7. In particular, upon annealing to 450 K, the mono-σ bonded chlorovinyl adspecies is found to further dechlorinate to either vinylene di-σ bonded to the Si surface or acetylene to be released from the surface. Above 580 K, vinylene could also become gaseous acetylene or undergo H abstraction to produce hydrocarbon or SiC fragments. All three DCE isomers also exhibit TDS features attributable to an etching product SiCl2 at 800-950 K and recombinative desorption products HCl at 700-900 K and H2 at 650-820 K. The stronger Cl-derived TDS signals and Si-Cl stretch at 510 cm−1 over 450-820 K for trans-DCE than those for cis-DCE indicate stronger dechlorination for trans-DCE than cis-DCE, which could be due to less steric hindrance resulting from the formation of the chlorovinyl adspecies for trans-DCE during the initial adsorption/dechlorination process. Finally, our density functional calculations qualitatively support the thermodynamic feasibility and relative stabilities of the proposed adstructures involving chlorovinyl, vinylidene, and vinylene adspecies.  相似文献   

15.
In this work we analyzed the geometry and the chemical interactions for c-C5H8 adsorption on Ge (0 0 1), using density functional theory calculations (DFT). We examined the changes in the atomic interactions using a slab model. We considered two cases, the cyclopentene adsorption on Ge(0 0 1) and on dimer vacancies on the surface. We found an average distance H-Ge, -C-Ge and C-Ge of 1.50, 1.70 and 1.65 Å, respectively, on dimer vacancies; and an average C-Ge distance of 2.05 Å on Ge-Ge dimer. We also computed the density of states (DOS) and the DOS weighted overlap populations (OPDOS) corresponding to C-C, C-Ge, C-H, and Ge-Ge bonds. During adsorption the main contribution are the CC double bond in both cases, and the next C and the H's belonging to this bonds in the case of adsorption on dimer vacancies. The orbital contribution includes participation of the 2py and 2pz orbitals corresponding to unsaturated C atoms, 2pz corresponding to side saturated C, and the 4p orbitals of Ge for the adsorption on dimer vacancies; 2s and 2pz orbitals corresponding to double bond C atoms, 4s and 4pz orbitals of Ge for the adsorption on Ge(0 0 1).  相似文献   

16.
Supersonic molecular beam technique combined with high resolution X-ray photoelectron spectroscopy using synchrotron radiation was applied to the study of the dynamics of dissociative adsorption of oxygen on Ru(0 0 0 1) surface in high coverage region. The Ru(0 0 0 1) surface pre-covered with oxygen atoms of 0.5 monolayer, which corresponds to the p(2 × 1)-O structure, was dosed to oxygen molecules with translational energy of 0.5 eV. Oxygen uptake was compared between the cases with and without the beam source heated in order to verify the effects of internal energy of oxygen. We found drastic enhancement in initial sticking probability of oxygen when the beam source was heated to 1400 K. We concluded that the enhancement of sticking probability is mainly caused by molecular vibrational excitation, indicating that dissociation barrier is located in the exit channel on potential energy surface.  相似文献   

17.
We have performed density-functional theory (DFT) calculations to investigate the adsorption structures of methanol on a Ge(1 0 0) surface. Among many possible adsorption configurations, the most favorable configurations at room temperature were found to be those in which the OH-dissociated methanol molecule forms O-Ge bonds, with the methoxy group either parallel or perpendicular to the Ge surface. The spatial arrangement of methoxy group relative to the Ge(1 0 0) surface is not critical. The dissociated H is bonded to an adjacent up-Ge atom, passivating the dangling bond. The possibility of H diffusion to other Ge atoms is also investigated. The corresponding simulated images explain well the adsorption features observed experimentally. The reaction pathways explain the feasibility of OH-dissociative structures at room temperature. The two OH-dissociative configurations where methoxy groups are either parallel or perpendicular to Ge surfaces are similar in thermodynamic and kinetic aspects.  相似文献   

18.
X.J. Zhou 《Surface science》2006,600(16):3285-3296
The room temperature (RT) adsorption of 1,2-difluorobenzene (1,2-DFB), 1,2-dichlorobenzene (1,2-DCB) and 1,2-dibromobenzene (1,2-DBB) on Si(1 0 0)2 × 1 have been investigated by X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD). Both XPS and TPD data show that the relative degree of dissociative to associative adsorption of the dihalogenated benzene (DXB) appears to increase with decreasing electronegativity of the halogen atom (X). In particular, the C 1s intensity ratios for the C-H and C-Si components to the C-X component are found to be 2, 3 and 9.6 for 1,2-DFB, 1,2-DCB and 1,2-DBB, respectively. These results indicate that 1,2-DFB, like benzene, exclusively adsorbs molecularly as a difluorocyclohexadiene adspecies on Si(1 0 0)2 × 1 while 1,2-DBB adsorbs predominantly with double debromination to form 1,2-phenylene. The majority of 1,2-DCB (75%) is found to adsorb molecularly, with the rest (25%) undergone single or double dechlorination to form chlorophenyl and phenylene, respectively. All three DXB molecules appear to have similar coverage as benzene. The two molecular desorption features for 1,2-DFB and 1,2-DCE are observed with desorption maxima at 460 K and 540 K similar to those found for benzene, which suggests that the dihalocyclohexadiene adstructures involve similar bonding through the benzene ring. In accord with the XPS data, no molecular desorption feature is observed for 1,2-DBB on the 2 × 1 surface. Further decomposition of the resulting phenylene adstructures is evident from the desorption fragment, C2H2, found at 610 K and 740 K. Recombinative desorption of HCl and HBr above 880 K are also found for 1,2-DCB and 1,2-DBB, respectively. The observed differences between associative and dissociative adsorption for the three DXB adsorbates could be attributed not only to the large difference in the C-X bond strength but also to the relative contributions from inductively withdrawing and resonantly donating electrons exerted by the halogen (X) atoms to the benzene ring.  相似文献   

19.
V2O3(0 0 0 1) films have been grown epitaxially on Au(1 1 1) and W(1 1 0). Under typical UHV conditions these films are terminated by a layer of vanadyl groups as has been shown previously [A.-C. Dupuis, M. Abu Haija, B. Richter, H. Kuhlenbeck, H.-J. Freund, V2O3(0 0 0 1) on Au(1 1 1) and W(1 1 0): growth, termination and electronic structure, Surf. Sci. 539 (2003) 99]. Electron irradiation may remove the oxygen atoms of this layer. H2O adsorption on the vanadyl terminated surface and on the reduced surface has been studied with thermal desorption spectroscopy (TDS), vibrational spectroscopy (IRAS) and electron spectroscopy (XPS) using light from the BESSY II electron storage ring in Berlin. It is shown that water molecules interact only weakly with the vanadyl terminated surface: water is adsorbed molecularly and desorbs below room temperature. On the reduced surface water partially dissociates and forms a layer of hydroxyl groups which may be detected on the surface up to T ∼ 600 K. Below ∼330 K also co-adsorbed molecular water is detected. The water dissociation products desorb as molecular water which means that they recombine before desorption. No sign of surface re-oxidation could be detected after desorption, indicating that the dissociation products desorb completely.  相似文献   

20.
Temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS) have been used to study the adsorption, desorption, molecular orientation and conformation of 1,3-butadiene on Ag(1 1 1) at 80 K. Butadiene adsorbs weakly as an s-trans conformer with the first layer oriented parallel to the silver surface and desorbs without decomposition. A very narrow line shape of the out-of-plane modes at low submonolayer coverage indicates molecular ordering within the diluted adsorbed layer, presumably through weak π-bonding interaction with the surface and intermolecular repulsive interaction. Compression within the first layer at coverages above 0.5 ML is driven by repulsive interaction as seen in both TPD and IRAS data. The IR intensity rollover and peak broadening, together with a significant shift in the TPD peak to lower temperature, indicate a reorientation of the butadiene molecule. Adsorption in the second- and multilayer is characterized by distinct IR frequency shifts and crystal field splitting effects similar to those reported for solid butadiene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号