首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A.P. Farkas  F. Solymosi 《Surface science》2006,600(11):2355-2363
The adsorption and surface reactions of propyl iodide on clean and potassium-modified Mo2C/Mo(1 0 0) surfaces have been investigated by thermal desorption spectroscopy (TPD), X-ray photoelectron spectroscopy (XPS) and high resolution electron energy loss spectroscopy (HREELS) in the 100-1200 K temperature range. This work is strongly related to the better understanding of the catalytic effect of Mo2C in the conversion of hydrocarbons. Potassium was found to be an effective promoter: it induced the rupture of C-I bond in the adsorbed C3H7I even at 100 K. The extent of C-I bond scission varied approximately linearly with the concentration of K coverage at the adsorption temperature of 100 K. As revealed by HREELS and TPD measurements the primary products of the dissociation are C3H7 and I. The former one was stabilized by potassium and underwent dehydrogenation and hydrogenation to give propene and propane. The desorption of both compounds is reaction-limited process. A fraction of propyl groups was converted into di-σ-bonded propene, which was stable up to ∼380 K. The coupling reaction of propyl species was also facilitated by potassium and resulted in the formation of hexane and hexene with Tp ∼ 230-250 K. Hydrogen was released with Tp = 390 K, indicative of a desorption limited process. The effect of potassium was explained by the extended electron donation to adsorbed propyl iodide in one hand, and by the direct interaction between potassium and I on the other hand. This was reflected by the shift of the desorption of potassium from the coadsorbed layer at and above 1.0 ML to higher temperature, and by the coincidal Tp values (∼700 K) of potassium and iodine. The formation of KI was also supported by the appearance of a loss feature at 650 cm−1 in the HREEL spectra attributed to a phonon mode of KI.  相似文献   

2.
The adsorption properties of CO on the epitaxial five-monolayer Co/Cu(1 0 0) system, where the Co overlayer has stabilized in the metastable fcc-phase, are reported. This system is known to exhibit metallic quantum well (MQW) states at energies 1 eV or greater above the Fermi level, which may influence CO adsorption. The CO/fcc-Co/Cu(1 0 0) system was explored with low energy electron diffraction (LEED), inverse photoemission (IPE), reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). Upon CO adsorption, a new feature is observed in IPE at 4.4 eV above EF and is interpreted as the CO 2π level. When adsorbed at room temperature, TPD exhibits a CO desorption peak at ∼355 K, while low temperature adsorption reveals additional binding configurations with TPD features at ∼220 K and ∼265 K. These TPD peak temperatures are correlated with different C-O stretch vibrational frequencies observed in the IR spectra. The adsorption properties of this surface are compared to those of the surfaces of single crystal hcp-Co, as well as other metastable thin film systems.  相似文献   

3.
V2O3(0 0 0 1) films have been grown epitaxially on Au(1 1 1) and W(1 1 0). Under typical UHV conditions these films are terminated by a layer of vanadyl groups as has been shown previously [A.-C. Dupuis, M. Abu Haija, B. Richter, H. Kuhlenbeck, H.-J. Freund, V2O3(0 0 0 1) on Au(1 1 1) and W(1 1 0): growth, termination and electronic structure, Surf. Sci. 539 (2003) 99]. Electron irradiation may remove the oxygen atoms of this layer. H2O adsorption on the vanadyl terminated surface and on the reduced surface has been studied with thermal desorption spectroscopy (TDS), vibrational spectroscopy (IRAS) and electron spectroscopy (XPS) using light from the BESSY II electron storage ring in Berlin. It is shown that water molecules interact only weakly with the vanadyl terminated surface: water is adsorbed molecularly and desorbs below room temperature. On the reduced surface water partially dissociates and forms a layer of hydroxyl groups which may be detected on the surface up to T ∼ 600 K. Below ∼330 K also co-adsorbed molecular water is detected. The water dissociation products desorb as molecular water which means that they recombine before desorption. No sign of surface re-oxidation could be detected after desorption, indicating that the dissociation products desorb completely.  相似文献   

4.
The adsorption and surface reactions of CH2I2 on the K-dosed Mo2C/Mo(1 0 0) have been studied by high resolution electron energy loss spectroscopy, X-ray photoelectron spectroscopy and thermal desorption spectroscopy. Potassium is an effective promoter for the rupture of C-I bond in the adsorbed CH2I2. A partial dissociation of this compound occurred even at 100 K and was completed at 190 K at monolayer K coverage. The dissociation was further promoted by the illumination of coadsorbed layer at 100 K. As revealed by HREELS and XPS measurements the primary products of the dissociation are CH2 and I. Methylene was converted to π-bonded ethylene characterized by Tp = 160 K, and di-σ-ethylene with Tp = 350 K. Other products of the surface reaction are hydrogen and methane. The coupling reaction of CH2 species was clearly facilitated by potassium. The effect of potassium was explained by the extended electron donation to adsorbed alkyl iodide in one hand, and by the direct interaction between potassium and I on the other hand.  相似文献   

5.
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface.  相似文献   

6.
The adsorption of water on a RuO2(1 1 0) surface was studied by using high-resolution electron energy loss spectroscopy (HREELS) and thermal desorption spectroscopy (TDS). The first thermal desorption peak observed between 350 and 425 K is attributed to molecular water adsorbed on fivefold coordinated Rucus sites. Higher coverages of water give rise to TDS peaks between 190 and 160 K, which we attribute to water in the second layer bound to bridge oxygen, and multilayers, respectively. HREELS shows that H2O chemisorbs on Rucus sites through oxygen inducing a slight red shift of the vibrational frequency of Obridge atoms. Molecular adsorption is also confirmed by the presence of both the scissor and the libration modes showing the expected isotopic shift for D2O. The water adsorbed on the Rucus sites also forms hydrogen bonds with the bridge oxygen indicated by the broad intensity at the lower frequency side of the O-H stretch mode. HREELS and TDS results suggest that on the perfect RuO2(1 1 0) surface water dissociation is almost negligible.  相似文献   

7.
Zhipeng Chang 《Surface science》2007,601(9):2005-2011
Methanethiol adsorbed on Ru(0 0 0 1)-p(2 × 2)O has been studied by TPD and XPS. The dissociation of methanethiol to methylthiolate and hydrogen at 90 K is evidenced by the observation of hydroxyl and water. The saturation coverage of methylthiolate is ∼0.15 ML, measured by both XPS and TPD. A detailed analysis suggests that only the hcp-hollow sites have been occupied. Upon annealing the surface, water and hydroxyl desorb from the surface at ∼210 K. Methylthiolate decomposes to methyl radical and atomic sulphur via C-S cleavage between 350 and 450 K. Some methyl radicals (0.05 ML) have been transferred to Ru atoms before they decompose to carbon and hydrogen. The rest of methyl radicals desorb as gaseous phase. No evidence for the transfer of methyl radical to surface oxygen has been found.  相似文献   

8.
Temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS) have been used to study the adsorption, desorption, molecular orientation and conformation of 1,3-butadiene on Ag(1 1 1) at 80 K. Butadiene adsorbs weakly as an s-trans conformer with the first layer oriented parallel to the silver surface and desorbs without decomposition. A very narrow line shape of the out-of-plane modes at low submonolayer coverage indicates molecular ordering within the diluted adsorbed layer, presumably through weak π-bonding interaction with the surface and intermolecular repulsive interaction. Compression within the first layer at coverages above 0.5 ML is driven by repulsive interaction as seen in both TPD and IRAS data. The IR intensity rollover and peak broadening, together with a significant shift in the TPD peak to lower temperature, indicate a reorientation of the butadiene molecule. Adsorption in the second- and multilayer is characterized by distinct IR frequency shifts and crystal field splitting effects similar to those reported for solid butadiene.  相似文献   

9.
We have studied the adsorption structure of acetic anhydride on a TiO2(1 1 0) surface using XPS (X-ray photoelectron spectroscopy), LEED (low energy electron diffraction) and HREELS (high resolution electron energy loss spectroscopy) to determine the origins of the unique adsorption properties of carboxylic acids on a TiO2(1 1 0) surface. The C 1s XPS data indicated that the saturation carbon amount of adsorbed acetic anhydride was 12 ± 3% larger than that of the adsorbed acetic acid. LEED showed p(2 × 1) weak spots for the acetic anhydride adsorbed surface. The HREELS spectra revealed the dissociative adsorption of acetic anhydride. Based on these findings, we concluded that the neutralization of the bridging oxygen atoms associated with the dissociative adsorption is necessary for the stable adsorption of carboxylates on the 5-fold Ti sites.  相似文献   

10.
The adsorption and decomposition of triethylsilane (TES) on Si(1 0 0) were studied using temperature programmed desorption (TPD), high resolution electron energy loss spectroscopy (HREELS), electron stimulated desorption (ESD), and X-ray photoelectron spectroscopy (XPS). TPD and HREELS data indicate that carbon is thermally removed from the TES-dosed Si(1 0 0) surface via a β-hydride elimination process. At high exposures, TPD data shows the presence of physisorbed TES on the surface. These species are characterized by desorption of TES fragments at 160 K. Non-thermal decomposition of TES was studied at 100 K by irradiating the surface with 600 eV electrons. ESD of mass 27 strongly suggests that a β-hydride elimination process is a channel for non-thermal desorption of ethylene. TPD data indicated that electron irradiation of physisorbed TES species resulted in decomposition of the parent molecule and deposition of methyl groups on the surface that desorbed thermally at about 900 K. Without electron irradiation, mass 15 was not detected in the TPD spectra, indicating that the production of methyl groups in the TPD spectra was a direct result of electron irradiation. XPS data also showed that following electron irradiation of TES adsorbed on Si(1 0 0), carbon was deposited on the surface and could not be removed thermally.  相似文献   

11.
X.J. Zhou 《Surface science》2006,600(16):3285-3296
The room temperature (RT) adsorption of 1,2-difluorobenzene (1,2-DFB), 1,2-dichlorobenzene (1,2-DCB) and 1,2-dibromobenzene (1,2-DBB) on Si(1 0 0)2 × 1 have been investigated by X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD). Both XPS and TPD data show that the relative degree of dissociative to associative adsorption of the dihalogenated benzene (DXB) appears to increase with decreasing electronegativity of the halogen atom (X). In particular, the C 1s intensity ratios for the C-H and C-Si components to the C-X component are found to be 2, 3 and 9.6 for 1,2-DFB, 1,2-DCB and 1,2-DBB, respectively. These results indicate that 1,2-DFB, like benzene, exclusively adsorbs molecularly as a difluorocyclohexadiene adspecies on Si(1 0 0)2 × 1 while 1,2-DBB adsorbs predominantly with double debromination to form 1,2-phenylene. The majority of 1,2-DCB (75%) is found to adsorb molecularly, with the rest (25%) undergone single or double dechlorination to form chlorophenyl and phenylene, respectively. All three DXB molecules appear to have similar coverage as benzene. The two molecular desorption features for 1,2-DFB and 1,2-DCE are observed with desorption maxima at 460 K and 540 K similar to those found for benzene, which suggests that the dihalocyclohexadiene adstructures involve similar bonding through the benzene ring. In accord with the XPS data, no molecular desorption feature is observed for 1,2-DBB on the 2 × 1 surface. Further decomposition of the resulting phenylene adstructures is evident from the desorption fragment, C2H2, found at 610 K and 740 K. Recombinative desorption of HCl and HBr above 880 K are also found for 1,2-DCB and 1,2-DBB, respectively. The observed differences between associative and dissociative adsorption for the three DXB adsorbates could be attributed not only to the large difference in the C-X bond strength but also to the relative contributions from inductively withdrawing and resonantly donating electrons exerted by the halogen (X) atoms to the benzene ring.  相似文献   

12.
Yunsheng Ma 《Surface science》2009,603(7):1046-1391
The formation, stability and CO adsorption properties of PdAg/Pd(1 1 1) surface alloys were investigated by X-ray photoelectron spectroscopy (XPS) and by adsorption of CO probe molecules, which was characterized by temperature-programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The PdAg/Pd(1 1 1) surface alloys were prepared by annealing (partly) Ag film covered Pd(1 1 1) surfaces, where the Ag films were deposited at room temperature. Surface alloy formation leads to a modification of the electronic properties, evidenced by core-level shifts (CLSs) of both the Pd(3d) and Ag(3d) signal, with the extent of the CLSs depending on both initial Ag coverage and annealing temperature. The role of Ag pre-coverage and annealing temperature on surface alloy formation is elucidated. For a monolayer Ag covered Pd(1 1 1) surface, surface alloy formation starts at ∼450 K, and the resulting surface alloy is stable upon annealing at temperatures between 600 and 800 K. CO TPD and HREELS measurements demonstrate that at 120 K CO is exclusively adsorbed on Pd surface atoms/Pd sites of the bimetallic surfaces, and that the CO adsorption behavior is dominated by geometric ensemble effects, with adsorption on threefold hollow Pd3 sites being more stable than on Pd2 bridge sites and finally Pd1 a-top sites.  相似文献   

13.
The adsorption and reaction of vinyl acetate with the clean Pd(1 1 0) surface has been investigated using temperature programmed desorption and molecular beam reaction measurements. These show that, under low pressure conditions, the main reaction pathway above 400 K is total dehydrogenation to yield hydrogen and carbon dioxide in the gas phase, and surface carbon. This occurs at a steady state, notwithstanding the fact that carbon is being deposited continuously onto the surface. The reaction continues because the vast majority of this carbon is lost from the surface to the bulk of the sample. Between about 320-380 K the reaction profile is somewhat different; the molecule dissociates at the CH3COOCHCH2 bond, producing the most stable intermediate, the acetate, and the reaction stops after the build-up of adsorbed acetate and surface carbonaceous species. At ∼300 K, the products are very similar to those for acetaldehyde adsorption (namely, methane, CO and some surface carbon), and they evolve in a non-steady state manner due to the build up of adsorbed CO on the surface. Thus the mechanism is dominated here by dissociation at the CH3COOCHCH2 bond, and formation of the acetyl intermediate. Consideration is given to the connection between these data and vinyl acetate synthesis.  相似文献   

14.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

15.
Infrared reflection absorption spectroscopy (IRRAS) was used to investigate carbon monoxide (CO) adsorption on 0.15 nm-thick-0.6 nm-thick Pd-deposited Pt(1 1 1) bimetallic surfaces: Pdx/Pt(1 1 1) (where x is the Pd thickness in nanometers) fabricated using molecular beam epitaxial method at substrate temperatures of 343 K, 473 K, and 673 K. Reflection high-energy electron diffraction (RHEED) measurements for Pd0.15-0.6 nm/Pt(1 1 1) surfaces fabricated at 343 K showed that Pd grows epitaxially on a clean Pt(1 1 1), having an almost identical lattice constant of Pt(1 1 1). The 1.0 L CO exposure to the clean Pt(1 1 1) at room temperature yielded linearly bonded and bridge-bonded CO-Pt bands at 2093 and 1855 cm−1. The CO-Pt band intensities for the CO-exposed Pdx/Pt(1 1 1) surfaces decreased with increasing Pd thickness. For Pd0.3 nm/Pt(1 1 1) deposited at 343 K, the 1933 cm−1 band caused by bridge-bonded CO-Pd enhanced the spectral intensity. The linear-bonded CO-Pt band (2090 cm−1) almost disappeared and the bridge-bonded CO-Pd band dominated the spectra for Pd0.6 nm/Pt(1 1 1). With increasing substrate temperature during the Pd depositions, the relative band intensities of the CO-Pt/CO-Pd increased. For the Pd0.3 nm/Pt(1 1 1) deposited at 673 K, the linear-bonded CO-Pt and bridge-bonded CO-Pd bands are located respectively at 2071 and 1928 cm−1. The temperature-programmed desorption (TPD) spectrum for the 673 K-deposited Pd0.3 nm/Pt(1 1 1) showed that a desorption signal for the adsorbed CO on the Pt sites decreased in intensity and shifted ca. 20 K to a lower temperature than those for the clean Pt(1 1 1). We discuss the CO adsorption behavior on well-defined Pd-deposited Pt(1 1 1) bimetallic surfaces.  相似文献   

16.
D.B. Skliar 《Surface science》2007,601(14):2887-2895
Room temperature adsorption and reaction of 2,2,6,6-tetramethyl-3,5-heptanedione (dpmH) on the Si(1 0 0)-2 × 1 surface has been studied with ultra-high vacuum scanning tunneling microscopy (UHV-STM) and temperature programmed desorption (TPD). The molecule is found to chemisorb as a mixture of at least five distinct species. Density functional theory (DFT) was used to calculate the structures and adsorption energies of 12 possible addition products. Unique bonding assignments for each experimental feature are proposed by consideration of a common intermediate reaction network, and a comparison of possible reaction pathways leading to the final products. These assignments are: OH inter-dimer dissociation, OH intra-dimer dissociation, 1,5 intra-dimer addition, 1,5 inter-dimer addition, and intra-dimer [2 + 2]CO addition with OH dissociation on an adjacent dimer. TPD and STM results show that the molecule dissociates completely upon annealing to 700 °C with formation of the c(4 × 4) phase at low exposures, and SiC islands for exposures exceeding 0.15 L.  相似文献   

17.
The reaction of acetaldehyde with the Pd(1 1 0) surface has been studied using a molecular beam reactor, TPD and LEED. Below 270 K acetaldehyde sticks to the surface with a high initial probability (∼0.8), but no gas phase products evolve. When the reaction is run at >270 K, hydrogen evolves into the gas phase early in the reaction together with methane in a non-steady-state fashion, but above 300 K there is a very efficient steady-state catalytic reaction at the surface; this reaction is the decarbonylation of acetaldehyde to produce methane and carbon monoxide in the gas phase. This behaviour continues up to about 400 K. However, when acetaldehyde is dosed at 423 K, the reaction rate slowly evolves through a maximum to a very low catalytic rate. Upon carrying out reactor experiments at 473 K and above, the reaction mechanism changes to total dehydrogenation, and CO and H2 are produced at high steady-state rate, not withstanding the fact that carbon is continually being deposited onto the surface. This carbon does not appear to affect the reaction, which takes place on a surface with a c(2 × 2)-C layer present, since the extra carbon is lost from the reaction zone by diffusion into the bulk of the crystal.  相似文献   

18.
The adsorption and reactivity of SO2 on the Ir(1 1 1) and Rh(1 1 1) surfaces were studied by surface science techniques. X-ray photoelectron spectroscopy measurements showed that SO2 was molecularly adsorbed on both the Ir(1 1 1) surface and the Rh(1 1 1) surface at 200 K. Adsorbed SO2 on the Ir(1 1 1) surface disproportionated to atomic sulfur and SO3 at 300 K, whereas adsorbed SO2 on the Rh(1 1 1) surface dissociated to atomic sulfur and oxygen above 250 K. Only atomic sulfur was present on both surfaces above 500 K, but the formation process and structure of the adsorbed atomic sulfur on Ir(1 1 1) were different from those on Rh(1 1 1). On Ir(1 1 1), atomic sulfur reacted with surface oxygen and was completely removed from the surface, whereas on Rh(1 1 1), sulfur did not react with oxygen.  相似文献   

19.
The adsorption of NH3 molecule on the Si(1 1 1)-7 × 7 surface modelled with a cluster has been studied using density functional theory (DFT). The results indicate the existence of a precursor state for the non-dissociative chemisorption. The active site for the molecular chemisorption is the adatom; while the NH3 molecule adsorbs on the Si restatom via this preadsorbed state, the adsorption on the Si adatom is produced practically without an energy barrier. The ammonia adsorption on the adatom induces an electron transfer from the dangling bond of this atom to the dangling bond of the adjacent Si restatom, hindering this site for the adsorption of a second NH3 incoming molecule. However, this second molecule links strongly by means of two H-bonds. The dissociative chemisorption process was studied considering one and two ammonia molecules. For the dissociation of a lonely NH3 molecule an energy barrier of ∼0.3 eV was calculated, yielding NH2 on the adatom and H on the restatom. When two molecules are adsorbed, the NH3-NH3 interaction yields the weakening of a N-H bond of the ammonia molecule adsorbed closer the Si surface. As a consequence, the dissociation barrier practically disappears. Thus, the presence of a second NH3 molecule at the adatom-restatom pair of the Si(1 1 1)-7 × 7 surface makes the dissociative reaction self-assisted, the total adsorption process elapsing with a negligible activation barrier (less than 0.01 eV).  相似文献   

20.
Eldad Herceg 《Surface science》2006,600(19):4563-4571
The formation of a well-ordered p(2 × 2) overlayer of atomic nitrogen on the Pt(1 1 1) surface and its reaction with hydrogen were characterized with reflection absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The p(2 × 2)-N overlayer is formed by exposure of ammonia to a surface at 85 K that is covered with 0.44 monolayer (ML) of molecular oxygen and then heating to 400 K. The reaction between ammonia and oxygen produces water, which desorbs below 400 K. The only desorption product observed above 400 K is molecular nitrogen, which has a peak desorption temperature of 453 K. The absence of oxygen after the 400 K anneal is confirmed with AES. Although atomic nitrogen can also be produced on the surface through the reaction of ammonia with an atomic, rather than molecular, oxygen overlayer at a saturation coverage of 0.25 ML, the yield of surface nitrogen is significantly less, as indicated by the N2 TPD peak area. Atomic nitrogen readily reacts with hydrogen to produce the NH species, which is characterized with RAIRS by an intense and narrow (FWHM ∼ 4 cm−1) peak at 3322 cm−1. The areas of the H2 TPD peak associated with NH dissociation and the XPS N 1s peak associated with the NH species indicate that not all of the surface N atoms can be converted to NH by the methods used here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号