首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Systematic studies of Ge quantum dots (QDs) grown on strained Si0.3Ge0.7 layer have been carried out by photoluminescence (PL) and deep level transient spectroscopy (DLTS). In PL measurements, two peaks around 0.7 eV are distinguished, which are assigned to two types of QDs observed by atomic force microscopy (AFM). Large blueshifts of the PL peaks from small QDs with the increase of excitation power are observed and attributed to the band bending effects typical for type-II band alignment. From DLTS measurements, the energy levels of holes in both types of QDs are derived, which shift with the change of the number of holes in QDs due to their charge energy. By comparing results from PL and DLTS measurements, further understanding of band alignment with the increase of the number of excitons in QDs is deduced.  相似文献   

2.
CdTe quantum dots (QDs) were prepared in an aqueous solution using various mercaptocarboxylic acids, such as 3-mercaptopropionic acid (MPA) and thioglycolic acid (TGA), as stabilizing agents. The experimental result indicated that these stabilizing agents played an important role for the properties of the QDs. Although both TGA and MPA-capped CdTe QDs exhibited the tunable photoluminescence (PL) from green to red color, the TGA-capped QDs revealed a higher PL quantum yield (QY) up to 60% than that of MPA-capped QDs (up to 50%) by using the optimum preparation conditions, such as a pH value of ~11.2 and a TGA/Cd molar ratio of 1.5. PL lifetime measurements indicate that the TGA-capped QDs exhibited a short average lifetime while the MPA-capped QDs revealed a long one. Furthermore, the average lifetime of the TGA-capped QDs increased with the increase of the QDs size, while a decreased lifetime for the MPA-capped QDs was obtained. This means that the PL lifetime depended strongly on the surface state of the CdTe QDs. These results should be utilized for the preparation and applications of QDs.  相似文献   

3.
We studied the optical properties of multiple layers of self-assembled CdSe quantum dots (QDs) embedded in ZnSe, grown by molecular beam epitaxy. The ZnSe barrier thicknesses separating the QD layers ranged from 30 to 60 monolayers (ML). For stacks with thinnest ZnSe barriers photoluminescence (PL) measurements reveal blue shifts as large as 180 meV relative to PL observed for single QD layers. The amount of blue shift decreases with increasing barrier thickness, and for the 60 ML spacer the PL energy returns to that emitted by a single layer of QDs. Temperature dependence of the integrated intensity of the emission spectra reveals that the activation energy for PL quenching is largest for barrier thicknesses of 30 and 45 ML. We tentatively attribute these effects to a decrease in the size of the vertically stacked QDs when the thickness of the barrier layers is small.  相似文献   

4.
Photoluminescence (PL) measurements have been carried out to investigate the annealing effects in one-period and three-periods of InAs/GaAs self-assembled quantum dots (QDs) grown on GaAs substrates by using molecular beam epitaxy. After annealing, the PL spectra for the annealed InAs/GaAs QDs showed dramatic blue shifts and significant linewidth narrowing of the PL peaks compared with the as-grown samples. The variations in the PL peak position and the full width at half-maximum of the PL peak are attributed to changes in the composition of the InAs QDs resulting from the interdiffusion between the InAs QDs and the GaAs barrier and to the size homogeneity of the QDs. These results indicate that the optical properties and the crystal qualities of InAs/GaAs QDs are dramatically changed by thermal treatment.  相似文献   

5.
We study the variations of optical properties of self-assembled In0.5Ga0.5As single quantum dots (QDs) in the spatial and time domains by combining a near-field scanning optical microscope with an ultrafast pulsed laser. Through the examinations of several tens of QDs, we find that the variations of photoluminescence (PL) intensity strongly depend on the condition of the initial carrier creation. The differences in quantum efficiency and those in the carrier flow rate into QDs cause the large distribution of PL intensity when the carriers are excited in the barrier layers. From the results of time-resolved PL decay measurements, we find that there are two types of QDs exhibiting quite different PL decay profiles.  相似文献   

6.
We report a photoluminescence (PL) energy red-shift of single quantum dots (QDs) by applying an in-plane compressive uniaxial stress along the [110] direction at a liquid nitrogen temperature. Uniaxial stress has an effect not only on the confinement potential in the growth direction which results in the PL shift, but also on the cylindrical symmetry of QDs which can be reflected by the change of the full width at half maximum of PL peak. This implies that uniaxial stress has an important role in tuning PL energy and fine structure splitting of QDs.  相似文献   

7.
We investigate size-dependent carrier dynamics in self-assembled CdTe/ZnTe quantum dots (QDs) grown using molecular beam epitaxy and atomic layer epitaxy. Photoluminescence (PL) spectra show that the excitonic peak corresponding to transitions from the ground electronic subband to ground heavy-hole band in CdTe/ZnTe QDs shifts to a lower energy with increasing ZnTe buffer thicknesses. This shift of the PL peak can be attributed to size variation of the CdTe QDs. In particular, carrier dynamics in CdTe QDs grown on various ZnTe buffer layer thicknesses is studied using time-resolved PL measurements. As a result, the decay time of CdTe QDs is shown to increase with increasing ZnTe buffer layer thicknesses due to the reduction of the exciton oscillator strength in the larger QDs.  相似文献   

8.
Control of light emission by engineering the electromagnetic vacuum is important in photonics for fundamental understanding as well as in applications. Omnidirectional photonic crystals such as logpile photonic crystals provide a very interesting system to study such phenomena. Here, we describe the first steps towards achieving systematic and reproducible control of light using titanium dioxide (TiO2) logpile photonic crystals (PC) with incorporated cadmium chalcogenide (CdSe) quantum dots (QDs) (λ  600 nm) to potentially modify QD photoluminescence (PL). We present a technique for coating a monolayer of the QDs on the PC rods based on 3-mercaptopropyltrimethoxysilanol linkage and measured the resulting PL response. Comparison of the PL spectra to a finite difference time domain model shows the need for further localization of QDs and fabrication of additional PC unit cells to observe PL modification.  相似文献   

9.
We have investigated a series of double-layer structures consisting of a layer of self-assembled non-magnetic CdSe quantum dots (QDs) separated by a thin ZnSe barrier from a ZnCdMnSe diluted magnetic semiconductor (DMSs) quantum well (QW). In the series, the thickness of the ZnSe barrier ranged between 12 and 40 nm. We observe two clearly defined photoluminescence (PL) peaks in all samples, corresponding to the CdSe QDs and the ZnCdMnSe QW, respectively. The PL intensity of the QW peak is observed to decrease systematically relative to the QD peak as the thickness of the ZnSe barrier decreases, indicating a corresponding increase in carrier tunneling from the QW to the QDs. Furthermore, polarization-selective PL measurements reveal that the degree of polarization of the PL emitted by the CdSe QDs increases with decreasing thickness of the ZnSe barriers. The observed behavior is discussed in terms of anti-parallel spin interaction between carriers localized in the non-magnetic QDs and in the magnetic QWs.  相似文献   

10.
A kind of novel thermal history nanosensors are theoretically designed and experimentally demonstrated to permanently record thermal events. The photoluminescence (PL) spectrum of core‐shelled quantum dots (QDs) CdSe/ZnS irreversibly shifts with heating histories (temperature and duration) of thermal events. The induced PL shift of the QDs CdSe/ZnS is employed to permanently record thermal histories. We further model a kind of thermal history nanosensor based on the thermal‐induced phenomena of core‐shelled QDs to permanently record thermal histories at microscale and demonstrate to reconstruct temperature and duration of heating events simultaneously from PL spectra of the QDs. The physical mechanism of the sensors is discussed.  相似文献   

11.
Although water soluble thiol-capped quantum dots (QDs) have been widely used as photoluminescence (PL) probes in various applications, the negative charges on thiol terminals limit the cell uptake hindering their applications in cell imaging. The commercial liposome complex (Sofast®) was used to encapsulate these QDs forming the liposome vesicles with the loading efficiency as high as about 95%. The cell uptakes of unencapsulated QDs and QD loaded liposome vesicles were comparatively studied by a laser scanning confocal microscope. We found that QD loaded liposome vesicles can effectively enhance the intracellular delivery of QDs in three cell lines (human osteosarcoma cell line (U2OS); human cervical carcinoma cell line (Hela); human embryonic kidney cell line (293 T)). The photobleaching of encapsulated QDs in cells was also reduced comparing with that of unencapsulated QDs, measured by the PL decay of cellular QDs with a continuous laser irradiation in the microscope. The flow cytometric measurements further showed that the enhancing ratios of encapsulated QDs on cell uptake are about 4–8 times in 293 T and Hela cells. These results suggest that the cationic liposome encapsulation is an effective modality to enhance the intracellular delivery of thiol-capped QDs.  相似文献   

12.
采用分子束外延技术,分别在480,520℃的生长温度下,制备了淀积厚度2.7ML的InAs/GaAs量子点。用原子力显微镜对样品进行形貌测试和统计分布。结果表明,在相应的生长温度下,量子点密度分别为8.0×1010,5.0×109cm-2,提高生长温度有利于获得大尺寸的量子点,并且量子点按高度呈双模分布。结合光致发光谱的分析,在480℃的生长条件下,最近邻量子点之间的合并导致了量子点尺寸的双模分布;而在525℃的生长温度下,In偏析和InAs解析是形成双模分布的主要原因。  相似文献   

13.
Hybrid nanostructures of quantum dots(QDs) and metallic nanostructure are attractive for future use in a variety of optoelectronic devices. For photodetection applications, it is important that the photoluminescence (PL) of QDs is quenched by the metallic nanostructures. Here, the quenching efficiency of CdSe/ZnS core-shell quantum dots (QDs) with different sized gold nanoparticles (NPs) films through energy transfer is investigated by measuring the PL intensity of the hybrid nanostructures. In our research, the gold NPs films are formed by the post-annealing of the deposited Au films on the quartz substrate. We find that the energy transfer from the QDs to the Au NPs strongly depends on the sizes of the Au NPs. For CdSe/ZnS QDs direct contact with the Au NPs films, the largest energy transfer efficiency are detected when the resonance absorption peak of the Au NPs is nearest to the emission peak of the CdSe/ZnS QDs. However, when there is a PMMA spacer between the QDs layer and the Au NPs films, firstly, we find that the energy transfer efficiency is weakened, and the largest energy transfer efficiency is obtained when the resonant absorption peak of the Au NPs is farthest to the emission peak wavelength of CdSe/ZnS QDs. These results will be useful for the potential design of the high efficiency QDs optoelectronic devices.  相似文献   

14.
The effect of thermal annealing on self-assembled uncapped InAs/GaAs quantum dots (QDs) has been investigated using transmission electron microscopy (TEM) and photoluminescence (PL) measurements. The TEM images showed that the lateral sizes and densities of the InAs QDs were not changed significantly up to 650 °C. When the InAs/GaAs QDs were annealed at 700 °C, while the lateral size of the InAs QDs increased, their density decreased. The InAs QDs disappeared at 800 °C. PL spectra showed that the peaks corresponding to the interband transitions of the InAs QDs shifted slightly toward the high-energy side, and the PL intensity decreased with increasing annealing temperature. These results indicate that the microstructural and the optical properties of self-assembled uncapped InAs/GaAs can be modified due to postgrowth thermal annealing.  相似文献   

15.
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.  相似文献   

16.
苏丹  窦秀明  丁琨  王海艳  倪海桥  牛智川  孙宝权 《物理学报》2015,64(23):235201-235201
采用光学方法确定InAs/GaAs单量子点在样品外延面上的位置坐标, 利用AlAs牺牲层把含有量子点的GaAs层剥离并放置在含有金纳米颗粒或平整金膜上, 研究量子点周围环境不同对量子点自发辐射寿命及发光提取效率的影响. 实验结果显示, 剥离前后量子点发光寿命的变化小于13%, 含有金纳米颗粒的量子点发光强度是剥离前的7倍, 含有金属薄膜的量子点发光强度是剥离前的2倍. 分析表明在金纳米颗粒膜上的量子点荧光强度的增加主要来自于金纳米颗粒对量子点荧光的散射效应, 从而提高量子点发光的提取效率.  相似文献   

17.
The effects of rapid thermal annealing on the optical properties of InAs/(In)GaAs quantum dots (QDs) with different areal density were investigated by photoluminescence (PL) measurement. The annealing results in PL peak energy blue-shift which strongly depends on QD areal density and capping layer. It is noticeable that low-density QDs and/or InGaAs-capped QDs are more sensitive to the annealing. We attribute the larger energy blue-shift from these samples to enhanced strain-driven diffusion and/or defect-assisted diffusion.  相似文献   

18.
Cheng G  Lu W  Chen Y  Che CM 《Optics letters》2012,37(6):1109-1111
We report on hybrid light-emitting devices based on the emission of phosphorescent sensitized colloidal CdSe/ZnS quantum dots (QDs). Emission lifetime measurements demonstrated that the energy transfer (ET) from square-planar platinum(II) complex [4-CF3-(NC^N^)PtC≡CC6H-4'-F] (NC^HN^=1, 5-bis(2'-pyridyl)benzene) (Pt-2) to QDs is more efficient than that from octahedral iridium(III) complex bis[(4,6-difluorophenyl)pyridinato-N, C2]-(picolinato)iridium (FIrpic). This different ET efficiency might be attributed to the different spatial structures between Pt-2 and FIrpic. Pure red emission with CIE coordinates of (0.66, 0.33) and maximum external quantum efficiency of 2.08% and white emission with power efficiency of 3.15 lm/W were realized at different concentrations of Pt-2 and QDs, respectively.  相似文献   

19.
Temperature-dependent photoluminescence (PL) measurements were carried out ZnSe/ZnS quantum dots (QDs) grown with post-growth interruption under a dimethylzinc (DMZn) flow. The PL spectra showed sigmoidal peak shifts and V-shaped full width at half maximum (FWHM) variations with increasing temperature, which strongly suggest that the QD structure of ZnSe/ZnS is quite similar to that of other material systems grown in the Stranski–Krastanov mode. Apparent differences are revealed as a consequence of DMZn treatment: (i) the PL spectra of ZnSe/ZnS QDs showed peaks at higher energies and persisted up to 300 K, and(ii) the minimum points of the V-shaped FWHM appear at a higher temperature compared to H2-purged ZnSe/ZnS QDs. Experimental results demonstrate the enhancement of localization energy.  相似文献   

20.
The photoluminescence(PL) characteristics of ZnCuInS quantum dots(QDs) with varying ZnS shell thicknesses of 0, 0.5, and 1.5 layers are investigated systemically by time-correlated single-photon counting measurements and temperature-dependent PL measurements. The results show that a ZnS shell thickness of 1.5 layers can effectively improve the PL quantum yield in one order of magnitude by depressing the surface trapping states of the core ZnCuInS QDs at room temperature. However, the PL measurements at the elevated temperature reveal that the core-shell nanocrystals remain temperature-sensitive with respect to their relatively thin shells.The temperature sensitivity of these small-sized single-layered core-shell nanocrystals may find applications as effective thermometers for the in vivo detection of biological reactions within cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号