首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
朴红光  张寿  潘淑梅 《大学物理》2004,23(12):25-29
从有源有互感的介观电容耦合电路的运动方程出发,通过正则变换和幺正变换的方法对有源有互感的介观电容耦合电路进行量子化,并讨论其量子涨落,结果表明电荷和电流的量子涨落与电源无关.当电路的各器件确定时,(L1 L3)/L2和C1/C2的大小对涨落有很大的影响。  相似文献   

2.
耗散介观电容耦合电路的量子效应   总被引:7,自引:0,他引:7       下载免费PDF全文
邱深玉  蔡绍洪 《物理学报》2006,55(2):816-819
对介观耗散电容耦合电路作阻尼谐振子处理,将其量子化,在此基础上研究电荷和电流在能量本征态下的量子涨落,并对其进行讨论.结果表明,每个回路的电荷、电流都存在量子涨落,且两回路的量子噪声是相互关联的. 关键词: 介观耗散电路 电容耦合 量子涨落  相似文献   

3.
平移压缩Fock态下介观电容耦合电路的量子涨落   总被引:33,自引:2,他引:31       下载免费PDF全文
王继锁  刘堂昆  詹明生 《物理学报》2000,49(11):2271-2275
从经典电容耦合电路的运动方程出发,研究了在平移压缩Fock态下介观电容耦合电路中每个回路的电荷和电流的量子涨落.结果表明,每个回路中电荷、电流的量子涨落只依赖于两个回路的器件参数和压缩参量,而与平移参量无关. 关键词: 介观电路 电容耦合 平移压缩Fock态 量子涨落  相似文献   

4.
平移压缩Fock态下无耗散介观电感耦合电路的量子效应   总被引:3,自引:2,他引:1  
研究了在平移压缩Fock态下介观电感耦合电路中电荷和电流的量子涨落.结果表明:每个回路中电荷、电流的量子涨落只依赖于两回路的器件参量和压缩参量,而与平移参量无关.  相似文献   

5.
介观互感耦合阻尼并联双谐振电路的量子涨落   总被引:5,自引:1,他引:4  
对介观互感耦合阻尼并联电路作双模耦合阻尼谐振子处理,将其量子化.通过三次幺正变换,将体系的哈密顿量对角化.在此基础上给出了体系的本征能谱,研究了Fock态、真空态下各回路电流和电压的量子涨落.  相似文献   

6.
从有源RLC电路运动方程出发,通过量子化有源RLC电路,计算了低温下电流、电荷的量子涨落以及电源对量子涨落的影响.  相似文献   

7.
压缩角对介观耦合电压缩效应的影响   总被引:3,自引:0,他引:3  
嵇英华  雷敏生 《计算物理》2001,18(2):147-151
从无耗散的电感耦合是电路的经典运动方程出发,研究了压缩真空态下介观电感耦合电路中电荷和电流的量子涨落;着重分析了压缩幅角参数对电荷和电流量子压缩效应的影响,结果表明:在任意幅角θ下,电荷或电流的量子涨落不是随压缩参数r增加而单调地减小,而是存在着一个极小值。  相似文献   

8.
介观电容耦合电路的量子涨落   总被引:38,自引:0,他引:38       下载免费PDF全文
王继锁  韩保存  孙长勇 《物理学报》1998,47(7):1187-1192
从无耗散的电容耦合电路的经典运动方程出发,分别研究了这一耦合电路在任一本征态下和在压缩真空态下电荷、电流的量子涨落.结果表明,两个回路中的量子噪声是相互关联的. 关键词:  相似文献   

9.
有源RLC介观电路的量子涨落   总被引:7,自引:0,他引:7  
使用正则交换和幺正变换的方法,研究了有源RLC介观电路的量子涨落。结果表明电源电动势ε(t)的有无对电荷和电流的量子涨落没有影响。  相似文献   

10.
崔元顺 《计算物理》1999,16(3):321-327
通过对无耗耦合含源介观电路的量子化和哈密顿量的对角化,求出了耦合电路的能谱,研究了压缩真空态下介观电路中电荷、电流的量子涨落和电源对量子涨落的影响。  相似文献   

11.
Mesoscopic damped double resonance mutual capacitance coupled RLC circuit is quantized by the method of damped harmonic oscillator quantization. The Hamiltonian is diagonalized by unitary transformation. The eigenenergy spectra of this circuit are given. The quantum fluctuations of the charges and current of each loop are researched in excitation state of the squeezed vacuum state, the squeezed vacuum state and in vacuum state. It is show that, the quantum fluctuations of the charges and current are related to not only circuit inherent parameter and coupled magnitude, but also quantum number of excitation, squeezed coefficients, squeezed angle and damped resistance. And, because of damped resistance, the quantum fluctuation decay along with time. PACS numbers: 03.65.-w,42.50.Lc.  相似文献   

12.
Quantum fluctuations in the mesoscopic capacitance-inductance-resistance coupled circuit with a power source are investigated using canonical transformation and a double wavefunction. We confirm that the fluctuations are not influenced by the power source. As a new method, the double wavefunction describes a single system of the coupled circuit, whereas the single wavefunction describes a quantum ensemble.  相似文献   

13.
Quantum Effects of Mesoscopic Inductance and Capacity Coupling Circuits   总被引:1,自引:0,他引:1  
Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finite-difference Schrödinger equation of the non-dissipative mesoscopic inductance and capacity coupling circuit is achieved. The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finite-difference Schrödinger equation can be divided into two Mathieu equations in \hat p representation. With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated.  相似文献   

14.
耗散介观电容耦合电路的量子化   总被引:7,自引:0,他引:7       下载免费PDF全文
宋同强 《物理学报》2004,53(5):1352-1356
通过正则化变换,研究了耗散介观电容耦合电路的量子化,并讨论了系统中电荷和广义电流 的量子涨落. 关键词: 耗散介观电容耦合电路 量子化 正则化变换  相似文献   

15.
The Schrödinger equation of the mesoscopic capacitance coupled circuit with an arbitrary power source is solved by means of two step unitary transformation. The original Hamiltonian transformed to a very simple form by unitary operators so that it can be easily treated. We derived the exact full wave functions in Fock state. By making use of these wave functions and introducing the Lewis--Riesenfeld invariant operator, the thermal state have been constructed. The fluctuations of charges and currents are evaluated in thermal state. For T→ 0, the uncertainty products between charges and currents in thermal state recovers exactly to that of Fock state with n, m=0.  相似文献   

16.
徐兴磊  李洪奇  王继锁 《中国物理》2007,16(8):2462-2470
Based on the scheme of damped harmonic oscillator quantization and thermo-field dynamics (TFD), the quantization of mesoscopic damped double resonance RLC circuit with mutual capacitance--inductance coupling is proposed. The quantum fluctuations of charge and current of each loop in a squeezed vacuum state are studied in the thermal excitation case. It is shown that the fluctuations not only depend on circuit inherent parameters, but also rely on excitation quantum number and squeezing parameter. Moreover, due to the finite environmental temperature and damped resistance, the fluctuations increase with the temperature rising, and decay with time.  相似文献   

17.
本文利用含时微扰论,研究了电源幅值较小时介观LC电路中电荷与电流的量子涨落。在确定的温度下,系统将处在混合态,进一步得到有限温度下含源介观LC电路的量子涨落。研究表明有源介观LC电路的量子涨落不仅与电路参数有关,还与时间和温度有关。  相似文献   

18.
The quantization of two Josephson junctions coupled via inductor with the discreteness of electric charges is proposed. The finite-difference Schrodinger equation of the circuit system has been obtained in charge representation, and the Schrodinger equation is turned to be Mathieu equation in flux representation. The wavefunction and energy spectrum can be solved by adopting the canonical transformation and unitary transformation method. The results indicate that the quantum fluctuations of the flux in the ground states of each mesh exist and are interrelated.  相似文献   

19.
通过正则变换将有源介观RLC电路进行了量子化,运用路径积分方法求出了介观RLC电路的波函数.由该波函数严格计算了电荷、电流的量子涨落.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号