首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N. Ozawa 《Surface science》2006,600(18):3550-3554
We investigate the quantum mechanical behavior of adsorbed hydrogen (H, D, T) on Cu(1 0 0) and (1 1 0) surfaces. We construct potential energy surfaces (PESs) for the motion of the hydrogen H atom on Cu(1 0 0) and (1 1 0) surfaces within the framework of density functional theory. The potential energy takes a minimum value on the hollow site of Cu(1 0 0) and on the short bridge site of Cu(1 1 0). Moreover, we calculate the quantum states of hydrogen atom motion on these calculated PESs. The ground state wave function of the hydrogen atom motion is strongly localized around the hollow site on the Cu(1 0 0) surface. On the other hand, the ground state wave function of the hydrogen atom motion on Cu(1 1 0) is distributed from the short bridge site to two neighboring pseudo-threefold sites. We finally show isotope effects on the quantum states of the motion of hydrogen on both surfaces.  相似文献   

2.
We have performed first principles calculations for clean and Pd doped Ag(1 1 1) and Ag(1 0 0) surfaces, with and without adsorbed O and CO. Our results for the structure of the Pd doped Ag surfaces indicate that Pd atoms are located lower than the surrounding Ag surface atoms. We find that O atoms adsorbed on Pd doped Ag(1 1 1) reside at the fcc hollow sites, the site next to Pd being slightly favored. Moreover, we provide results for O and CO co-adsorption on the clean and Pd doped Ag(1 1 1) surfaces, indicating that Pd can act as an electronic promoter for the CO oxidation reaction.  相似文献   

3.
We present a theoretical study of the electronic and magnetic structure of the 3d-transition metals (M = V, Cr, Mn and Fe) in several overlayer systems. The electronic as well as magnetic structures are investigated for pseudomorphic overlayers (M/Ir(0 0 1)), ordered alloyed overlayers of the type M0.5Ir0.5/Ir(0 0 1) and ordered binary surface alloys of V, Cr, Mn and Fe transition metals on Ir(0 0 1) substrates. The calculations are performed with a self-consistent tight-binding method using the unrestricted Hartree-Fock approximation within the Hubbard model. We obtained metastable c(2 × 2) configurations for V, Cr and Mn and a p(1 × 1) configuration for Fe pseudomorphic overlayers. However, ferrimagnetic configuration has been obtained for the ordered surface alloys M0.5Ir0.5 and the binary alloyed overlayers on Ir(0 0 1) surfaces.  相似文献   

4.
We report the formation of Si(1 1 3)-3 × 2 facets upon exposing oxygens on the Si(5 5 12) surface at an elevated temperature. These facets are found to form only for a limited range of oxygen exposure and exhibit a well-defined 3 × 2 LEED pattern. We also find the surface electronic state unique only to the facets in the valence band. The spectral feature of these electronic states and the behavior of a (1/3 1/2) LEED spot upon oxygen contents in the facets indicate that the formation is a heterogeneous mixture of the clean Si(1 1 3) facets free of oxygens and other facets containing oxygen atoms.  相似文献   

5.
We used the molecular dynamics simulation with interatomic potentials of the embedded atom method to calculate the high-index surface energies of the surfaces containing the 〈0 0 1〉 axis or 〈−1 1 0〉 axis in f.c.c. metal Al, Cu and Ni at zero temperature. We generalized an empirical formula based on structural unit model for high-index surfaces and present some new formulas that can be used to estimate the surface energy and structural feature of high-index surfaces very well. The results show that the closest surfaces have the lowest surface energy and the surface energies of the closest (1 1 1) surface and the next closest (1 1 0), (1 0 0) surfaces are the extremum on the curve of surface energy versus orientation angle. We also calculated the b.c.c. metal Fe and obtained a similar result. The difference is that in the b.c.c. metal the surface energies of the closest (1 1 0) surface and the next closest (1 0 0), (1 1 2) surfaces are the extremum on the curve of surface energy versus orientation angle. The results of theoretical simulation and the empirical formula consist well with the experiment data.  相似文献   

6.
Presented are results of our ab initio study of the surface reconstruction and relaxation of (1 0 0) surfaces on diamond nanowires. We have used a density function theory within the generalized-gradient approximation using the Vienna ab initio simulation package, to consider dehydrogenated and hydrogenated surfaces. Edges of nanowires offer a new challenge in the determination of surface structure. We have applied the methodology for stepped diamond (1 0 0) surfaces to this problem, and consider it useful in describing diamond nanowire edges to first approximation. We have found that dimer lengths and atomic layer depths of the C(1 0 0)(2 × 1) and C(1 0 0)(2 × 1):H nanowire surfaces differ slightly from those of bulk diamond and nanodiamond surfaces. The aim of this study is provide a better understanding of the effects of nano-scale surfaces on the stability of diamond nanostructures.  相似文献   

7.
We report the influence of crystal orientation on the magnetic properties of CoFe2O4 (CFO) thin films grown on single crystal Si (1 0 0) and c-cut sapphire (Al2O3) (0 0 0 1) substrates using pulsed laser deposition technique. The thickness was varied from 200 to 50 nm for CFO films grown on Si substrates, while it was fixed at 200 nm for CFO films grown on Al2O3 substrates. We observed that the 200 and 100 nm thick CFO-Si films grew in both (1 1 1) and (3 1 1) directions and displayed out-of-plane anisotropy, whereas the 50 nm thick CFO-Si film showed only an (1 1 1) orientation and an in-plane anisotropy. The 200 nm thick CFO film grown on an Al2O3 substrate was also found to show a complete (1 1 1) orientation and a strong in-plane anisotropy. These observations pointed to a definite relation between the crystalline orientation and the observed magnetic anisotropy in the CFO thin films.  相似文献   

8.
Scanning tunnelling microscopy (STM) was used to study the (1 1 0) surface of a VC0.8 sample. The surface shows a missing-row reconstruction, i.e., a grating structure with ridges and valleys oriented along the [0 0 1] direction and (1 0 0) and (0 1 0) facets. We did not find unreconstructed (1 1 0) terraces. The regular spacing of the ridges corresponds to a periodicity of (3 × 1) or (4 × 1), depending on preparation, presumably related to different concentrations of carbon vacancies. In the STM images, we can also observe apparent pairing of atoms in the rows, leading to the larger c(6 × 2) and (4 × 2) superstructure cells, which also show up in LEED. We attribute these additional periodicities to ordering of carbon vacancies in the surface rows.  相似文献   

9.
We have performed total-energy calculations to study theoretical scanning tunneling microscopy (STM) images of the Si(1 1 1)3 × 2 surfaces induced by the adsorption of alkaline-earth metals (AEMs). Previously, in a series of works on Ba/Si(1 1 1) system, we have found that the observed Si(1 1 1)3 × 1-Ba LEED phase indeed has a 3 × 2 periodicity with a Ba coverage of 1/6 ML and the HCC substrate structure. Based on results of the Ba case, we proposed that the HCC structure is also adopted for other AEM atoms, which was confirmed by our recent work. In this paper, we mainly report the STM simulations for different AEM systems to compare with existing experimental data. We discuss the difference in the detailed STM images for different AEM adsorbates. Especially, the difference in filled-state images between Mg and other AEM atoms is attributed to the strong Mg-Si interaction.  相似文献   

10.
Pentacene films on Si(1 0 0)-(2 × 1) surface at 300 K were investigated using near edge X-ray absorption fine structure (NEXAFS) at the carbon K-edge. NEXAFS spectra show that pentacene molecules are chemisorbed on the Si(1 0 0)-(2 × 1) surface for monolayer with flat-laying and predominantly physisorbed on the Si(1 0 0)-(2 × 1) surface for multilayer films with an upright molecular orientation. Absorption angle of pentacene molecules were measured through π transition. The angles between the double bond and the silicon surface were 35-55°, 65° and 76° at monolayer, 24 and 48 nm pentacene deposited on the Si(1 0 0) surface, respectively. We observed that the intermediate flat-laying phase is favored for monolayer coverage, while the films of molecules standing perpendicular to the Si(1 0 0) surface are favored for multilayer coverage.  相似文献   

11.
We used a metal-organic chemical vapor deposition (MOCVD) method to grow ZnO films on MgAl2O4 (1 1 1) substrate, and succeeded in preparing films with microstructures from well-aligned ZnO nanorods to continuous and dense films by adjusting the ratio of the input rates of oxygen and zinc sources (VI/II). At the growth temperature of 350 °C, the ZnO nanorods were formed under a low flow rate of a zinc precursor. On the other hand, continuous and dense ZnO films were formed under a high flow rate of the zinc precursor. There is a transition zone at medium zinc precursor flow rate, where nanorods transform to dense films. We proved that the height of ZnO nanorods and the thickness of ZnO dense films both increase with zinc flow rate, and are consistent with the mass-transport mechanism for ZnO growth. The XRD spectra of the sample in the transition zone show both (0 0 2) and (1 0 1) peaks, where (1 0 1) peaks are formed only in the transition zone. We consider that there are (0 0 2) and (1 0 1) ZnO grains in the early growth stage of dense ZnO films.  相似文献   

12.
We report on the adsorption and decomposition of NO on O-covered planar Ir(2 1 0) and nanofaceted Ir(2 1 0) with variable facet sizes investigated using temperature programmed desorption (TPD), high-resolution electron energy loss spectroscopy (HREELS), and density functional theory (DFT). When pre-covered with up to 0.5 ML O, both planar and faceted Ir(2 1 0) exhibit unexpectedly high reactivity for NO decomposition. Upon increasing the oxygen coverage to 0.7 ML O, planar Ir(2 1 0) has little activity while faceted Ir(2 1 0) still remains active toward NO decomposition, although NO decomposition is completely inhibited when both surfaces are pre-covered by 1 ML O. NO molecularly adsorbs on O-covered Ir at 300 K. At low NO and oxygen coverage, NO adsorbs on the atop sites of planar Ir(2 1 0) while on the bridge and atop sites of faceted Ir(2 1 0) composed of (1 1 0) and {3 1 1} faces. No evidence for size effects in the decomposition of NO on O-covered faceted Ir(2 1 0) is observed for average facet size in the range 5-14 nm. Our findings should be of importance for development of Ir-based catalysts for NO decomposition under oxygen-rich conditions.  相似文献   

13.
We investigate the temperature-dependent surface etching process induced by Ce silicide on Si(1 0 0) using scanning tunneling microscopy and X-ray photoelectron spectroscopy. We found that step edges on the Si(1 0 0) surface are gradually roughened due to the formation of Ce silicide as a function of substrate temperature. Unlike the Si(1 1 1) surface, however, terrace etching also occurs in addition to step roughening at 500 °C. Moreover, we found that Si(1 0 0) dimers are released and formed dimer vacancy lines because bulk diffusion of Ce silicide into Si(1 0 0) surface occurs the defect-induced strain at higher temperature (∼600 °C).  相似文献   

14.
Experimental studies of nitrogen adsorbed on a Cu(1 1 1) surface show that the surface layer undergoes a reconstruction to form a pseudo-(1 0 0) structure. We use ab initio techniques to demonstrate the theoretical stability of this reconstructed surface phase over a range of conditions. We systematically investigate the chemisorption of N on the Cu(1 1 1) surface, from 0.06 to 1 ML coverage. A peculiar atomic relaxation of N atoms for 0.75 ML is identified, which results in the formation of a (metastable) “N-trimer cluster” on the surface. We have also investigated surface nitride formation, as suggested from experiments. A surface nitride-like structure similar to the reported pseudo-(1 0 0) reconstruction is found to be highly energetically favored. Using concepts from “ab initio atomistic thermodynamics”, we predict that this surface nitride exists for a narrow range of nitrogen chemical potential before the formation of bulk Cu3N.  相似文献   

15.
T.E. Jones  P. Bailey 《Surface science》2006,600(10):2129-2137
The initial growth of Au on Ni{1 1 1} is strongly influenced by the 15.7% difference in bulk lattice parameter between the two fcc metals. At 400 K, the first monolayer of Au grows on the Ni{1 1 1} surface as a (9 × 9) overlayer with 8 Au-Au spacings being equivalent to 9 Ni-Ni spacings. Umezawa et al. [Physical Review B 57 (1998) 8842; Surface Science 426 (1999) 225] reported that the growth of Au overlayers can occur either via a reverse (R)-mode (i.e., incorporating a stacking fault at the Au-Ni interface) or a normal (N)-mode—the relative proportion of each mode being strongly sensitive to growth temperature. Using the technique of medium energy ion scattering, we examine the growth of Au on Ni{1 1 1} at 400 K. We conclude that, at this deposition temperature, there is a preference for growth via the R-mode (74 ± 9%). In addition, we find that the Au overlayer has a considerably higher density than bulk Au being contracted isotropically by 3.1% in the {1 1 1} plane and also by ∼7% perpendicular to the {1 1 1} plane. We discuss possible explanations for our findings.  相似文献   

16.
We report and model calculations of nanostripes formation of the Cu(3 3 2) surface obtained by oxygen-induced reconstruction. Scanning tunnelling microscope (STM) results with atomic resolution reveal alternate facets of clean Cu(1 1 1) and Cu(1 1 0)-O(2×1) along the [−1 1 0] direction, with the same average direction of Cu(3 3 2). At the edge between the two facets, oxygen is absorbed in a pseudo threefold site of the unreconstructed Cu(3 3 2). Tuneable periodicity, from 3 to 10 nm, is obtained by controlled change of the surface treatment. We discuss the formation of the periodic nanostructures and the mechanism driving the reconstruction via model calculations.  相似文献   

17.
Properties of the Cr(1 0 0)/Fe(1 0 0) and Cr(1 1 0)/Fe(1 1 0) interfaces are investigated with spin-polarized density functional theory within the generalized gradient approximation (DFT-GGA) for electron exchange and correlation. Contrary to earlier predictions for a monolayer of Cr on bulk Fe, we find intermixing of Cr and Fe at the interface of thick films to be endothermic; hence here we focus on characterizing abrupt, unalloyed interfaces. The ideal work of adhesion for both the (1 0 0) and (1 1 0) abrupt interfaces is predicted to be ∼5.4 J/m2. We propose that this anomalously strong adhesion between heterogeneous interfaces is derived from significant spin correlations and d-d bonding at the interface.  相似文献   

18.
The electronic structure of an octane film grown on Cu(1 1 1) and Ni(1 1 1) was studied using C K-edge near edge X-ray absorption fine structure (NEXAFS). A pre-peak was observed on the bulk edge onset for the 1 ML thick octane films on the metal substrates. The pre-peak originated from metal induced gap states (MIGS) in the band gap of octane. The intensity of the pre-peak for octane/Ni(1 1 1) was the same as that of octane/Cu(1 1 1), suggesting that there was little difference in the density of unoccupied MIGS between the octane film on Ni(1 1 1) and Cu(1 1 1). We discuss the metal dependence of the density of unoccupied MIGS on the band structure of the metals.  相似文献   

19.
We investigated the cleaning process of Si(1 0 0) surfaces by annealing in H2 gas ambient following chemical treatments by scanning tunneling microscopy. We observed the monohydride Si structure: Si(1 0 0):2 × 1-H on the surfaces annealed at 1000 °C in 2.5 × 104 Pa H2 gas ambient without conspicuous contaminants. On the sample annealed for 10 min or longer times, well-defined Si(1 0 0) structures with alternating SA and SB steps were observed, whereas the initial roughness still remained on the surfaces annealed for only 5 min.  相似文献   

20.
We investigated the growth characteristics and properties of GaAsBi layers grown by atmospheric-pressure metal–organic vapor-phase epitaxy on different GaAs substrate orientations. The surface morphology of GaAsBi alloys was investigated by means of scanning electron microscopy. The structural and optical properties of the alloys were examined using high-resolution X-ray diffraction (HRXRD) and photoreflectance spectroscopy, respectively. HRXRD results show that the GaAsBi growth rate was significantly lower on (1 1 5)A than on (0 0 1), (1 1 1)A and (1 1 4)A GaAs. The highest Bi content was obtained for GaAsBi layers grown on (1 1 5)A GaAs substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号