首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
根据爱因斯坦狭义相对论,热量具有其对应的相对论质量,并且引入了描述热质(热量)运动的连续方程、动量方程.本文根据热质(热量)运动控制方程组,导出了热质(热量)的波动方程,证明了热量具有波动的传递方式,当热质动能与热质的耗散在同一量级时,得到了有限的热波传播速度.分析了热波产生的物理机制.基于热质理论的热波模型与CV模型进行了比较,指出了CV模型在物理上的缺陷.最后对一维热波的传播过程进行了数值模拟,给出了超快速导热过程的物理图像.  相似文献   

2.
梅滨 《物理与工程》2006,16(3):47-50
本文简要介绍了热波成像检测技术的基本概念,热波成像的物理过程、特点,综述了热波成像技术的开发和在材料科学中的应用.  相似文献   

3.
王颖泽  宋新南  刘栋 《物理学报》2013,62(21):214601-214601
当热作用时间或受热器件结构尺寸呈现微尺度特征时, 热流运动的惯性效应将对热量的传递过程产生显著地影响. 基于热质的概念, 依据牛顿力学原理引入用于描述热质运动的热波方程, 结合各向同性材料的本构关系, 构建了计及热流运动惯性效应的广义热弹性动力学模型. 利用超常传热的微尺度特征, 采用解析的方法对半无限大体外表面受热冲击作用的一维问题进行了渐近求解. 通过对热波、热弹性波的传播和各物理场分布的分析以及与已有广义热弹性理论预测结果的对比, 揭示了热流运动的惯性效应对热弹性行为的影响. 结果表明:热量的传递除了受到热流加速的时间惯性影响之外, 热流运动的空间惯性也对传热行为产生影响, 当计及空间惯性时, 热波、热弹性波的波速、波前位置, 各物理场的建立时间、阶跃峰值及阶跃间隔均受到不同程度的影响. 关键词: 热惯性 热质运动 广义热弹性动力学模型 渐近分析  相似文献   

4.
研究了多壁碳纳米管(MWNTs)薄膜的湿敏特性,实验所用的多壁碳纳米管是用热灯丝化学气相沉积法(CVD)合成的.分别对未修饰和修饰的多壁碳纳米管膜温度和湿度特性进行研究后发现,修饰的多壁碳纳米管对温度和湿度非常敏感,且对湿度的响应时间和恢复时间短,重复性好.而未修饰的多壁碳纳米管对温度和湿度不太敏感.对修饰多壁碳纳米管的湿敏特性进行了理论分析,给出了其理论表示式. 关键词: 多壁碳纳米管 化学修饰 湿敏特性 物理吸附  相似文献   

5.
托卡马克装置是环形的等离子体约束系统,被认为是最有可能实现受控热核聚变的方式.等离子体与壁材料相互作用(Plasma wall interaction, PWI)过程所产生的杂质会严重威胁托卡马克装置的高参量稳态运行,因而发展有效的壁杂质监测方法十分关键.激光诱导击穿光谱(Laser-induced breakdown spectroscopy, LIBS)技术被视为极具潜力的壁表面元素分析技术,相关研究有助于PWI各种物理过程和机理的深入理解,以及发展PWI的控制方法.本文对国内外LIBS壁诊断相关研究现状进行评述,并阐述LIBS壁诊断技术的发展趋势和亟待解决的关键问题.  相似文献   

6.
采用一维流体模型研究了含有杂质离子的等离子体与器壁材料相互作用给边界等离子体参量带来的影响.通过数值模拟,研究了分别选用碳和钨作为器壁材料时,器壁温度不同情形下热发射产生的电子对等离子体器壁电势、电场强度、热发射电子流以及沉积器壁离子动能流的影响.研究结果发现,当面向等离子体材料表面温度升高时,器壁电势和热发射产生的电流将增加,器壁电场强度和离子沉积器壁动能流则会减小,并且钨作为器壁材料要比碳作为器壁材料对于等离子体边界参量影响更明显.此外,研究了钨作为器壁材料时,碳杂质离子(浓度和电荷数)对等离子体器壁参量的影响.  相似文献   

7.
亚表面圆柱体对热波的多重散射问题   总被引:2,自引:0,他引:2  
马晓波  胡超  谈和平 《光学学报》2005,25(12):707-1711
极端条件下的传热问题是工程热物理研究中的重要课题。基于非傅里叶热传导定律,采用波函数展开法,研究了含圆柱缺陷非透明体中热波散射问题。基于热传导波动模型给出了物体中热波多重散射问题的一般解。温度波由调制光束在材料表面激发,缺陷表面的边界条件为绝热。具体分析了几何参量、各物理参量对温度分布的影响,特别分析了热波波长对温度变化的作用,并给出了温度变化的数值结果。研究结果可望为红外辐射技术、热波成像等问题的分析提供理论基础和参考数据。在检测金属材料缺陷空间分布的激光热波探测系统中应用。  相似文献   

8.
 在“星光Ⅱ”上,使用基频光打靶,采用几种厚度的铝介质平面靶,进行了冲击波、热波和稀疏波三波相互作用规律的初步研究工作,成功地观测到冲击波在前和热波在后的物理图像,并发展了相关诊断技术和方法。  相似文献   

9.
基于非Fourier热传导方程,应用镜像方法考虑材料表面对热波的反射作用,采用波函数展开法研究了半无限功能梯度材料中亚表面异质圆柱夹杂的热波散射问题。给出了功能梯度材料中温度分布的一般解。分析了亚表面异质圆柱的几何参数(如夹杂大小、埋藏深度)和热物理参数(如导热系数、非均匀参数等)对功能梯度材料外表面温度的影响。热波可以通过谐和的调制激光加热在材料表面激发。本文可望为功能梯度材料的红外热波无损检测、热物理反问题的研究提供分析计算方法和参考数据。  相似文献   

10.
非绝热壁叶栅的粘性流动王正明(中国科学院工程热物理研究所北京100080)关键词非绝热壁;叶栅;粘性流动1引言近年来,随着计算机运算速度的提高,叶轮机械内部粘性流动的数值解法发展很快,对于动量方程,已广泛采用亘接求解不作简化的完全的N-S方程,以便更...  相似文献   

11.
沈智军  谢亚伟  闫伟 《计算物理》2012,29(6):807-814
使用单元中心型拉氏方法,研究一维球、柱坐标等径向对称流体力学方程组的数值格式和减少壁热误差的方法.简要分析壁热误差与差分格式修正方程的关系.通过对Riemann问题声波和HLL近似解的比较,提出减少壁热误差的一种自适应的热通量粘性.多项数值实验表明该方法可以获得令人满意的计算结果.  相似文献   

12.
In this paper we present the exact solution of the Riemann problem for the non-linear shallow water equations with a step-like bottom. The solution has been obtained by solving an enlarged system that includes an additional equation for the bottom geometry and then using the principles of conservation of mass and momentum across the step. The resulting solution is unique and satisfies the principle of dissipation of energy across the shock wave. We provide examples of possible wave patterns. Numerical solution of a first-order dissipative scheme as well as an implementation of our Riemann solver in the second-order upwind method are compared with the proposed exact Riemann problem solution. A practical implementation of the proposed exact Riemann solver in the framework of a second-order upwind TVD method is also illustrated.  相似文献   

13.
We present a class of augmented approximate Riemann solvers for the shallow water equations in the presence of a variable bottom surface. These belong to the class of simple approximate solvers that use a set of propagating jump discontinuities, or waves, to approximate the true Riemann solution. Typically, a simple solver for a system of m conservation laws uses m such discontinuities. We present a four wave solver for use with the the shallow water equations—a system of two equations in one dimension. The solver is based on a decomposition of an augmented solution vector—the depth, momentum as well as momentum flux and bottom surface. By decomposing these four variables into four waves the solver is endowed with several desirable properties simultaneously. This solver is well-balanced: it maintains a large class of steady states by the use of a properly defined steady state wave—a stationary jump discontinuity in the Riemann solution that acts as a source term. The form of this wave is introduced and described in detail. The solver also maintains depth non-negativity and extends naturally to Riemann problems with an initial dry state. These are important properties for applications with steady states and inundation, such as tsunami and flood modeling. Implementing the solver with LeVeque’s wave propagation algorithm [R.J. LeVeque, Wave propagation algorithms for multi-dimensional hyperbolic systems, J. Comput. Phys. 131 (1997) 327–335] is also described. Several numerical simulations are shown, including a test problem for tsunami modeling.  相似文献   

14.
In this paper, we propose new Euler flux functions for use in a finite-volume Euler/Navier–Stokes code, which are very simple, carbuncle-free, yet have an excellent boundary-layer-resolving capability, by combining two different Riemann solvers into one based on a rotated Riemann solver approach. We show that very economical Euler flux functions can be devised by combining the Roe solver (a full-wave solver) and the Rusanov/HLL solver (a fewer-wave solver), based on a rotated Riemann solver approach: a fewer-wave solver automatically applied in the direction normal to shocks to suppress carbuncles and a full-wave solver applied, again automatically, across shear layers to avoid an excessive amount of dissipation. The resulting flux functions can be implemented in a very simple and economical manner, in the form of the Roe solver with modified wave speeds, so that converting an existing Roe flux code into the new fluxes is an extremely simple task. They require only 7–14% extra CPU time and no problem-dependent tuning parameters. These new rotated fluxes are not only robust for shock-capturing, but also accurate for resolving shear layers. This is demonstrated by an extensive series of numerical experiments with standard finite-volume Euler and Navier–Stokes codes, including various shock instability problems and also an unstructured grid case.  相似文献   

15.
In this paper, the solution of the Riemann Problem for the one-dimensional, free-surface Shallow Water Equations over a bed step is analyzed both from a theoretical and a numerical point of view. Particular attention has been paid to the wave that is generated at the location of the bed discontinuity. Starting from the classical Shallow Water Equations, considering the bed level as an additional variable, and adding to the system an equation imposing its time invariance, we show that this wave is a contact wave, across which one of the Riemann invariants, namely the energy, is not constant. This is due to the fact that the relevant problem is nonconservative. We demonstrate that, in this type of system, Riemann Invariants do not generally hold in contact waves. Furthermore, we show that in this case the equations that link the flow variables across the contact wave are the Generalized Rankine–Hugoniot relations and we obtain these for the specific problem. From the numerical point of view, we present an accurate and efficient solver for the step Riemann Problem to be used in a finite-volume Godunov-type framework. Through a two-step predictor–corrector procedure, the solver is able to provide solutions with any desired accuracy. The predictor step uses a well-balanced Generalized Roe solver while the corrector step solves the exact nonlinear system of equations that consitutes the problem by means of an iterative procedure that starts from the predictor solution. In order to show the effectiveness and the accuracy of the proposed approach, we consider several step Riemann Problems and compare the exact solutions with the numerical results obtained by using a standard Roe approach far from the step and the novel two-step algorithm for the fluxes over the step, achieving good results.  相似文献   

16.
We first construct an approximate Riemann solver of the HLLC-type for the Baer–Nunziato equations of compressible two-phase flow for the “subsonic” wave configuration. The solver is fully nonlinear. It is also complete, that is, it contains all the characteristic fields present in the exact solution of the Riemann problem. In particular, stationary contact waves are resolved exactly. We then implement and test a new upwind variant of the path-conservative approach; such schemes are suitable for solving numerically nonconservative systems. Finally, we use locally the new HLLC solver for the Baer–Nunziato equations in the framework of finite volume, discontinuous Galerkin finite element and path-conservative schemes. We systematically assess the solver on a series of carefully chosen test problems.  相似文献   

17.
We present a Riemann solver derived by a relaxation technique for classical single-phase shallow flow equations and for a two-phase shallow flow model describing a mixture of solid granular material and fluid. Our primary interest is the numerical approximation of this two-phase solid/fluid model, whose complexity poses numerical difficulties that cannot be efficiently addressed by existing solvers. In particular, we are concerned with ensuring a robust treatment of dry bed states. The relaxation system used by the proposed solver is formulated by introducing auxiliary variables that replace the momenta in the spatial gradients of the original model systems. The resulting relaxation solver is related to Roe solver in that its Riemann solution for the flow height and relaxation variables is formally computed as Roe’s Riemann solution. The relaxation solver has the advantage of a certain degree of freedom in the specification of the wave structure through the choice of the relaxation parameters. This flexibility can be exploited to handle robustly vacuum states, which is a well known difficulty of standard Roe’s method, while maintaining Roe’s low diffusivity. For the single-phase model positivity of flow height is rigorously preserved. For the two-phase model positivity of volume fractions in general is not ensured, and a suitable restriction on the CFL number might be needed. Nonetheless, numerical experiments suggest that the proposed two-phase flow solver efficiently models wet/dry fronts and vacuum formation for a large range of flow conditions.As a corollary of our study, we show that for single-phase shallow flow equations the relaxation solver is formally equivalent to the VFRoe solver with conservative variables of Gallouët and Masella [T. Gallouët, J.-M. Masella, Un schéma de Godunov approché C.R. Acad. Sci. Paris, Série I, 323 (1996) 77–84]. The relaxation interpretation allows establishing positivity conditions for this VFRoe method.  相似文献   

18.
The idea of this work is to compare a new positive and entropy stable approximate Riemann solver by Francois Bouchut with a state-of the-art algorithm for astrophysical fluid dynamics. We implemented the new Riemann solver into an astrophysical PPM-code, the Prometheus code, and also made a version with a different, more theoretically grounded higher order algorithm than PPM. We present shock tube tests, two-dimensional instability tests and forced turbulence simulations in three dimensions. We find subtle differences between the codes in the shock tube tests, and in the statistics of the turbulence simulations. The new Riemann solver increases the computational speed without significant loss of accuracy.  相似文献   

19.
利用黎曼精确解和行波法相结合,在一维浅水方程中实现大时间步长(Large Time Step,LTS)格式,并采用多波近似解决稀疏波断裂的问题,采用随机选取法(Random Choice Method,RCM)解决非线性方程使用LTS格式出现的震荡问题.一系列数值试验发现,通过多波近似和随机选取法对大时间步长格式的改进,提高了计算效率,减小了震荡,取得了很好的计算效果.  相似文献   

20.
It has been claimed that the particular numerical flux used in Runge–Kutta Discontinuous Galerkin (RKDG) methods does not have a significant effect on the results of high-order simulations. We investigate this claim for the case of compressible ideal magnetohydrodynamics (MHD). We also address the role of limiting in RKDG methods.For smooth nonlinear solutions, we find that the use of a more accurate Riemann solver in third-order simulations results in lower errors and more rapid convergence. However, in the corresponding fourth-order simulations we find that varying the Riemann solver has a negligible effect on the solutions.In the vicinity of discontinuities, we find that high-order RKDG methods behave in a similar manner to the second-order method due to the use of a piecewise linear limiter. Thus, for solutions dominated by discontinuities, the choice of Riemann solver in a high-order method has similar significance to that in a second-order method. Our analysis of second-order methods indicates that the choice of Riemann solver is highly significant, with the more accurate Riemann solvers having the lowest computational effort required to obtain a given accuracy. This allows the error in fourth-order simulations of a discontinuous solution to be mitigated through the use of a more accurate Riemann solver.We demonstrate the minmod limiter is unsuitable for use in a high-order RKDG method. It tends to restrict the polynomial order of the trial space, and hence the order of accuracy of the method, even when this is not needed to maintain the TVD property of the scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号