首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
We analyze the transport through asymmetric double quantum dots with an inhomogeneous Zeeman splitting in the presence of crossed dc and ac magnetic fields.A strong spin-polarized current can be obtained by changing the dc magnetic field.It is mainly due to the resonant tunnelling.But for the ferromagnetic right electrode,the electron spin resonance also plays an important role in transport.We show that the double quantum dots with three-level mixing under crossed dc and ac magnetic fields can act not only as a bipolar spin filter but also as a spin inverter under suitable conditions.  相似文献   

2.
We propose a theoretical method to investigate the effect of the Dresselhaus spin–orbit coupling(DSOC) on the spin transport properties of a regular polygonal quantum ring with an arbitrary number of segments. We find that the DSOC can break the time reversal symmetry of the spin conductance in a polygonal ring and that this property can be used to reverse the spin direction of electrons in the polygon with the result that a pure spin up or pure spin down conductance can be obtained by exchanging the source and the drain. When the DSOC is considered in a polygonal ring with Rashba spin–orbit coupling(RSOC) with symmetric attachment of the leads, the total conductance is independent of the number of segments when both of the two types of spin–orbit coupling(SOC) have the same value. However, the interaction of the two types of SOC results in an anisotropic and shape-dependent conductance in a polygonal ring with asymmetric attachment of the leads. The method we proposed to solve for the spin conductance of a polygon can be generalized to the circular model.  相似文献   

3.
Ballistic spin transport in spin field-effect transistors is studied by taking into account the Rashba spinorbit coupling, interracial scattering, and band mismatch. It is shown that the spin conductance oscillation with the semiconductor channel length is a superimposition of the Rashba spin precession and spin interference oscillations. They have different oscillation periods π/κR and π/κ with κR the Rashba wavevector and κ the Fermi wavevector of the semiconductor channel, and play different parts of slow and rapid oscillations, depending upon the relative magnitude of π/κR and π/κ. Only at κ = κR does the spin conductance exhibit oscillations of a single period. Two types of different behaviors of the tunnelling magnetoresistance are discussed.  相似文献   

4.
Ballistic spin transport in spin field-effect transistors is studied by taking into account the Rashba spinorbit coupling, interfacial scattering, and band mismatch. It is shown that the spin conductance oscillation with the semiconductor channel length is a superimposition of the Rashba spin precession and spin interference oscillations. They have different oscillation periods π/kR and π/k with kR the Rashba wavevector and k the Fermi wavevector of the semiconductor channel, and play different parts of slow and rapid oscillations, depending upon the relative magnitude of π/kR and π/k. Only at k = kR does the spin conductance exhibit oscillations of a single period. Two types of different behaviors of the tunnelling magnetoresistance are discussed.  相似文献   

5.
刘立平  曹晋  郭伟  王崇愚 《中国物理 B》2022,31(1):16105-016105
Heavy elements(X=Ta/W/Re)play an important role in the performance of superalloys,which enhance the strength,anti-oxidation,creep resistance,and anti-corrosiveness of alloy materials in a high-temperature environment.In the present research,the heavy element doping effects in FCC-Ni(γ)and Ni3Al(γ')systems are investigated in terms of their thermodynamic and mechanical properties,as well as electronic structures.The lattice constant,bulk modulus,elastic constant,and dopant formation energy in non-spin,spin polarized,and spin-orbit coupling(SOC)calculations are compared.The results show that the SOC effects are important in accurate electronic structure calculations for alloys with heavy elements.We find that including spin for bothγandγ'phases is necessary and sufficient for most cases,but the dopant formation energy is sensitive to different spin effects,for instance,in the absence of SOC,even spin-polarized calculations give 1%to 9%variance in the dopant formation energy in our model.Electronic structures calculations indicate that spin polarization causes a split in the metal d states,and SOC introduces a variance in the spin-up and spin-down states of the d states of heavy metals and reduces the magnetic moment of the system.  相似文献   

6.
吴绍全  侯涛  赵国平  余万伦 《中国物理 B》2010,19(4):47202-047202
Using the Keldysh nonequilibrium Green function and equation-of-motion technique, this paper studies the magnetotransport through an Aharonov--Bohm (AB) ring with parallel double quantum dots coupled to ferromagnetic leads. It calculates the transmission probability in both the equilibrium and the nonequilibrium case, analyses the conductance and the tunnel magnetoresistance for various parameters, and obtains some new results. These results show that this system is provided with an excellent spin filtering property, and that a large tunnelling magnetoresistance and a negative tunnelling magnetoresistance can arise by adjusting relative parameters; these facts indicate that this system is a possible candidate for spin valve transistors, and has important applications in spintronics.  相似文献   

7.
张冰志  崔虎  李湘衡  佘卫龙 《中国物理 B》2009,18(11):4924-4931
We theoretically study the beam dynamical behaviour in a modulated optical lattice with a quadratic potential in a photovoltaic photorefractive crystal.We find that two different Bloch oscillation patterns appear for the excitation of both broad and narrow light beams.One kind of optical Landau–Zener tunnelling also appears upon the Bloch oscillation and can be controlled by adjusting the parameter of the optical lattice.Unlike the case of linear potential,the energy radiation due to Landau–Zener tunnelling can be confined in modulated lattices of this kind.For high input intensity levels,the Landau–Zener tunnelling is suppressed by the photovoltaic photorefractive nonlinearity and a symmetry breaking of beam propagation from the modulational instability appears.  相似文献   

8.
This paper reports that the nickel--silicone rubber composites with enhanced piezoresistivity were synthesized with much reduced nickel concentration. A large piezosensitivity of 0.716/kPa and a gauge factor of 600 have been obtained for a composite sample with filler-polymer ratio of 2.7:1 by weight. Measurements of resistance as a function of uniaxial force reveal that the piezoresistance arises predominantly from the internal heterogeneity of the material and the effect of geometrical changes of samples under pressure is neglectably small. The nonlinear current--voltage characteristic of the composite depends strongly on the filler content, the initial compression and the electrical current flowing in the sample. Ohmic behaviour has been observed only in the highly compressed samples. The breakdown strength decreases with increasing filler content of the composite. Both I-V and R-f characteristics indicates that the resistivity of the composites decreases with electrical field, suggesting that the composite may also be used to make voltage sensitive resistors for protecting circuits. All the experimental results favour a quantum tunnelling mechanism of conductivity. It finds that the concept `negative resistance', often used to describe the phenomena that current decreases with increasing voltage, is not appropriate and should be avoided.  相似文献   

9.
Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we investigate Fano versus Kondo resonances in a closed Aharonov-Bohm interferometer coupled to ferromagnetic leads and study their effects on the conductance of this system. The conductance with both parallel and antiparallel lead-polarization alignments is analysed for various values of the magnetic flux. Our results show that this system can provide an excellent spin filtering property, and a large tunnelling magnetoresistance can arise by adjusting the system parameters, which indicates that this system is a possible candidate for spin valve transistors and has important applications in spintronics.  相似文献   

10.
We investigate theoretically the spin accumulation in a Rashba spin-orbit coupling (SOC) nanoribbon nonadiabatically connected to a normal conductor. Both the nanoribbon and conductor are described by a hard-wall confining potential. Using the scattering matrix approach within the effective free-electron approximation, we have calculated the out-of-plane spin accumulation in the nanoribbon. It is found that the spin accumulation shifts toward the two edges of nanoribbon with the increasing of propagation modes. Specifically, as the Rashba SOC strength increases the spin accumulation in the nanoribbon will be enhanced and this result may suggest us a simple method to control the spin accumulation of the system by Rashba SOC strength.  相似文献   

11.
郭怀明  冯世半 《中国物理 B》2012,21(7):77303-077303
We study a toy square-lattice model under a uniform magnetic field. Using the Landauer-Bttiker formula, we calculate the transport properties of the system on a two-terminal, a four-terminal and a six-terminal device. We find that the quantum spin Hall (QSH) effect appears in energy ranges where the spin-up and spin-down subsystems have different filling factors. We also study the robustness of the resulting QSH effect and find that it is robust when the Fermi levels of both spin subsystems are far away from the energy plateaus but is fragile when the Fermi level of any spin subsystem is near the energy plateaus. These results provide an example of the QSH effect with a physical origin other than time-reversal (TR) preserving spin-orbit coupling (SOC).  相似文献   

12.
Powerful multinomial generating functions together with the character table of the six-dimensional hyperoctahedral wreath product group S6[S2] of the non-rigid water hexamer are employed to obtain the nuclear spin species, nuclear spin multiplets and the total nuclear spin statistical weights of the rovibronic-tunnelling levels for both deuterated and regular forms. The methods are composed of algebraic generating functions involving 531,441 nuclear spin functions for (D2O)6 in a group of 46,080 operations and 65 irreducible representations of the S6[S2] group. Although the deuterated form of the non-rigid water hexamer possesses nuclear spin populations in 58 of the 65 possible symmetries of tunnelling levels, for the regular water hexamer only 23 of the 65 symmetries are populated with nuclear spin functions. The tunnelling splitting correlations of rovibronic levels of the water hexamer have been obtained from the Saykally's semi-rigid (G4) model to the fully non-rigid limit (G46080). The computed nuclear spin statistical weights for protonated form of (H2O)6 call for a reinterpretation of the previous assignment of the observed spectra. The results can also be applied to enumerate the hyperfine patterns using the nuclear spin multiplets and intensities in semi-rigid to fully non-rigid limits.  相似文献   

13.
龚士静  段纯刚 《物理学报》2015,64(18):187103-187103
自旋轨道耦合是电子自旋与轨道相互作用的桥梁, 它提供了利用外电场来调控电子的轨道运动、进而调控电子自旋状态的可能. 固体材料中有很多有趣的物理现象, 例如磁晶各向异性、自旋霍尔效应、拓扑绝缘体等, 都与自旋轨道耦合密切相关. 在表面/界面体系中, 由于结构反演不对称导致的自旋轨道耦合称为Rashba自旋轨道耦合, 它最早在半导体材料中获得研究, 并因其强度可由栅电压灵活调控而备受关注, 成为电控磁性的重要物理基础之一. 继半导体材料后, 金属表面成为具有Rashba自旋轨道耦合作用的又一主流体系. 本文以Au(111), Bi(111), Gd(0001)等为例综述了磁性与非磁性金属表面Rashba自旋轨道耦合的研究进展, 讨论了表面电势梯度、原子序数、表面态波函数的对称性, 以及表面态中轨道杂化等因素对金属表面Rashba自旋轨道耦合强度的影响. 在磁性金属表面, 同时存在Rashba自旋轨道耦合作用与磁交换作用, 通过Rashba自旋轨道耦合可能实现电场对磁性的调控. 最后, 阐述了外加电场和表面吸附等方法对金属表面Rashba自旋轨道耦合的调控. 基于密度泛函理论的第一性原理计算和角分辨光电子能谱测量是金属表面Rashba自旋轨道耦合的两大主要研究方法, 本文综述了这两方面的研究结果, 对金属表面Rashba自旋轨道耦合进行了深入全面的总结和分析.  相似文献   

14.
耿虎  计青山  张存喜  王瑞 《物理学报》2017,66(12):127303-127303
<正>研究了缀饰格子中的量子自旋霍尔效应,模型中同时考虑了Rashba自旋轨道耦合和交换场的作用.缀饰格子具有简立方对称性,以零能平带和单狄拉克锥结构为主要特点.在缀饰格子中,不论是实现量子自旋霍尔效应还是量子反常霍尔效应,都需要一个不为零的内禀自旋轨道耦合作用来打开一个完全的体能隙,这与石墨烯等六角格子模型有着很大的不同.在交换场破坏了时间反演对称性的情况下,以自旋陈数为标志的量子自旋霍尔效应仍然能够存在,边缘态和极化率的相关结果也证明了这一结论.结果表明自旋陈数比z2拓扑数在表征量子自旋霍尔效应方面有着更广泛的适用范围,相应的结论为利用磁场控制量子自旋霍尔效应提出了一个理论模型和依据.  相似文献   

15.
We analytically obtained the Schmidt decomposition of the entangled state between the pseudo spin and the true spin in graphene with Rashba spin–orbit coupling. The entangled state has the standard form of the Bell state, where the SU(2) spin symmetry is broken. These states can be explicitly expressed as the superposition of two nonorthogonal, but mirror symmetrical spin states entangled with the pseudo spin states. Because of the closely locking between the pseudo spin and the true spin, it is found that the orbit curve in the spin-polarization parameter space for the fixed equi-energy contour around Dirac points has the same shape as the δk-contour. Due to the spin–orbit coupling that cause the topological transition in the local geometry of the dispersion relation, the new equi-energy contours around the new emergent Dirac Points can be obtained by squeezing the one around the original Dirac point. The spin texture in the momentum space around the Dirac points is analyzed under the Rashba spin–orbit interaction and it is found that the orientation of the spin polarization at each crystal momentum k is independent of the Rashba coupling strength.  相似文献   

16.
彭菊  郁华玲  左芬 《中国物理 B》2010,19(12):127402-127402
We theoretically studied the nonlocal Andreev reflection with Rashba spin-orbital interaction in a triple-quantumdot(QD) ring,which is introduced as Rashba spin-orbital interaction to act locally on one component quantum dot.It is found that the electronic current and spin current are sensitive to the systematic parameters.The interdot spin-flip term does not play a leading role in causing electronic and spin currents.Otherwise the spin precessing term leads to shift of the peaks of the the spin-up and spin-down electronic currents in different directions and results in the spin current.Moreover,the spin-orbital interaction suppresses the nonlocal Andreev reflection,so we cannot obtain the pure spin current.  相似文献   

17.
The effects of elastic and inelastic electron–phonon interactions on current–voltage characteristic and tunnelling magnetoresistance (TMR) of Li@C59X (X = N, B) molecule that is coupled to two ferromagnetic electrodes was investigated using the non-equilibrium Green's function (NEGF) method. Our results by taking also into consideration spin degrees of freedom (excluding spin-mixing effects) indicate that the presence of inelastic electron–phonon interaction polaron formation increases current and shifts the TMR behaviour to higher values. Also, an increase of two orders of magnitude observed in current for Li@C59B compared to C60.  相似文献   

18.
An intrinsic contribution to the spin Hall effect in two‐dimensional silicene is considered theoretically within the linear response theory and Green's function formalism. When an external voltage normal to the silicene plane is applied, the spin Hall conductivity is shown to reveal a transition from the spin Hall insulator phase at low bias to the conventional insulator phase at higher voltages. This transition resembles the recently reported phase transition in bilayer graphene. The spin–orbit interaction responsible for this transition in silicene is much stronger than in graphene, which should make the transition observable experimentally. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
白继元  贺泽龙  杨守斌 《物理学报》2014,63(1):17303-017303
利用非平衡格林函数方法,理论研究每臂中嵌有一个平行耦合双量子点分子的A-B干涉仪(平行耦合双量子点分子A-B干涉仪)的电荷及其自旋输运性质.无外磁场时,与每臂中嵌有一个量子点的A-B干涉仪相比较,平行耦合双量子点分子A-B干涉仪中电子隧穿变得更加容易发生.当平行耦合双量子点分子A-B干涉仪中引入外磁场时,能够在电导能谱中观察到一个Fano共振和一个反共振,这两种输运状态在磁场取适当数值时能够同时消失.此外,通过调节左右两电极间的偏压、磁通和Rashba自旋轨道相互作用,可以对体系自旋输运进行调控.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号