首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Based on the transverse Ising model and using decoupling approximation to the Fermi-type Green's function, we study the phase transition properties of the epitaxial ferroeleetric film with one substrate. A general recursive equation of the ferroelectric thin film with two n-layer materials is obtained, which enables us to study the phase transition properties for any number layers for epitaxial ferroelectric thin film. With the help of this equation, we analyze the effect of the exchange interaction and the transverse field in the phase diagram, the influence to the polarizations and Curie temperature numerically. The results show that epitaxial ferroelectric film are able to induce a strong increase or decrease of Curie temperature to different exchange interactions and transverse fields within the epitaxial film layers. The theoretical results are in reasonable accordance with experimental data of different ferroelectric thin film.  相似文献   

2.
Motivated by our recent work,in this work,we present the numerical study of the anchoring effect on the Frederiks threshold field in a nematic liquid crystal doped with ferroelectric colloidal nanoparticles.Assuming weak anchoring conditions,we employ the relaxation method and Maxwell construction to numerically solve the Euler–Lagrangian differential equation for the total free energy together the Rapini–Papoular surface energy to take into account anchoring of nematic liquid crystal molecules at the substrates.In this study,we focus our attention on obtaining the phase diagrams of Frederiks transition for different values of anchoring strength which have been not computed in our previous work.In this way,the effect of nanoparticle radius,nanoparticle volume fraction,nanoparticle polarization,and cell thickness on the Frederiks transition for different values of anchoring conditions are summarized in the phase diagrams.The numerical results show that by increasing the nanoparticles size and nanoparticle volume fraction in the ferronematic system,the Frederiks threshold field is strongly reduced.  相似文献   

3.
Trapped ions, under electromagnetic confinement and Coulomb repulsion, can behave as non-interacting particles in one-dimensional lattices. Here we explore analytically the possible effects regarding Anderson localization in a chain of trapped ions experiencing laser Bessel beams. Under an experimentally feasible condition, we predict an analytical form of the energy-dependent mobility edges, which is verified to be in good agreement with the exact numerical results except for the top band. Some other important properties regarding the phonon localization in the ion chain are also discussed both analytically and numerically. Our results are relevant to experimental observation of localization–delocalization transition in the ion trap and helpful for deeper understanding of the rich phenomena due to long-range phonon hopping.  相似文献   

4.
刘通  成书杰  张锐  阮榕榕  姜厚勋 《中国物理 B》2022,31(2):27101-027101
We analytically and numerically study a 1 D tight-binding model with tunable incommensurate potentials.We utilize the self-dual relation to obtain the critical energy,namely,the mobility edge.Interestingly,we analytically demonstrate that this critical energy is a constant independent of strength of potentials.Then we numerically verify the analytical results by analyzing the spatial distributions of wave functions,the inverse participation rate and the multifractal theory.All numerical results are in excellent agreement with the analytical results.Finally,we give a brief discussion on the possible experimental observation of the invariable mobility edge in the system of ultracold atoms in optical lattices.  相似文献   

5.
《中国物理 B》2021,30(7):77101-077101
We study the topological properties of the one-dimensional non-Hermitian Kitaev model with complex either periodic or quasiperiodic potentials. We obtain the energy spectrum and the phase diagrams of the system by using the transfer matrix method as well as the topological invariant. The phase transition points are given analytically. The Majorana zero modes in the topological nontrivial regimes are obtained. Focusing on the quasiperiodic potential, we obtain the phase transition from the topological superconducting phase to the Anderson localization, which is accompanied with the Anderson localization–delocalization transition in this non-Hermitian system. We also find that the topological regime can be reduced by increasing the non-Hermiticity.  相似文献   

6.
Using Langevin simulations, we numerically study the influence of temperature to the dynamics of driven two-dimensional colloids on a disordered substrate. With decreasing temperature, the result shows a dynamic phase transition from the moving liquid to the moving smectic at high driving forces. A peak appears in the dynamically-critical driving force across the transition, accompanied by a clear cross of the curves of velocity-force dependence.  相似文献   

7.
We present a cluster mean-field study for ground-state phase diagram and many-body dynamics of spin-1 bosons confined in a two-chain Bose-Hubbard ladder(BHL).For unbiased BHL,we find superfluid(SF)phase and integer filling Mott insulator(Int MI)phase.For biased BHL,in addition to the SF and Int MI phases,there appears half-integer filling Mott insulator(HInt MI)phase.The phase transition between the SF and Int MI phases can be first order at a part of phase boundaries,while the phase transition between the SF and HInt MI phases is always second order.By tuning the bias energy,we report on the change of the nature of SF-MI phase transitions.Furthermore,we study the effect of the spin-dependent interaction on the many-body population dynamics.The spin-dependent interaction can lead to rich dynamical behaviors,but does not influence the particle transfer efficiency.Our results indicate a way to tune the nature of the SF-MI phase transition and open a new avenue to study the many-body dynamics of spinor bosons in optical lattices.  相似文献   

8.
9.
《中国物理 B》2021,30(6):66702-066702
We study the properties of Bose–Einstein condensates under a non-Hermitian spin–orbit coupling(SOC), induced by a dissipative two-photon Raman process. We focus on the dynamics of the condensate at short times, when the impact of decoherence induced by quantum jumps is negligible and the dynamics is coherently driven by a non-Hermitian Hamiltonian. Given the significantly modified single-particle physics by dissipative SOC, the interplay of non-Hermiticity and interaction leads to a quasi-steady-state phase diagram different from its Hermitian counterpart. In particular, we find that dissipation can induce a phase transition from the stripe phase to the plane-wave phase. We further map out the phase diagram with respect to the dissipation and interaction strengths, and finally investigate the stability of quasi-steady states through the time-dependent dissipative Gross–Pitaevskii equation. Our results are readily accessible based on standard experiments with synthetic spin–orbit couplings.  相似文献   

10.
Periodic Anderson model is one of the most important models in the field of strongly correlated electrons. With the recent developed numerical method density matrix embedding theory, we study the ground state properties of the periodic Anderson model on a two-dimensional square lattice. We systematically investigate the phase diagram away from half filling. We find three different phases in this region, which are distinguished by the local moment and the spin–spin correlation functions. The phase transition between the two antiferromagnetic phases is of first order. It is the so-called Lifshitz transition accompanied by a reconstruction of the Fermi surface. As the filling is close to half filling, there is no difference between the two antiferromagnetic phases. From the results of the spin–spin correlation, we find that the Kondo singlet is formed even in the antiferromagnetic phase.  相似文献   

11.
In this note we make a test of the open topological string version of the OSV conjecture in the toric Calabi-Yau manifold X = O(-3) → P^2 with background D4-branes wrapped on Lagrangian submanifolds. The Dbrahe partition function reduces to an expectation value of some inserted operators of a q-deformed Yang Mills theory living on a chain of P^1 's in the base p2 of X. At large N this partition function can be written as a sum over squares of chiral blocks, which are related to the open topological string amplitudes in the local p2 geometry with branes at both the outer and inner edges of the toric diagram. This is in agreement with the conjecture.  相似文献   

12.
《Nuclear Physics B》1996,477(3):652-674
The target space theory of the N = (2,1) heterotic string may be interpreted as a theory of gravity coupled to matter in either 1 + 1 or 2 + 1 dimensions. Among the target space theories in 1 + 1 dimensions are the bosonic, type II, and heterotic string world-sheet field theories in a physical gauge. The (2 + 1)-dimensional version describes a consistent quantum theory of supermembranes in 10 + 1 dimensions. The unifying framework for all of these vacua is a theory of (2 + 2)-dimensional self-dual geometries embedded in 10 + 2 dimensions. There are also indications that the N = (2,1) string describes the strong-coupling dynamics of compactifications of critical string theories to two dimensions, and may lead to insights about the fundamental degrees of freedom of the theory.  相似文献   

13.
The gauge fixing procedure is reanalyzed in our fully gauge-invariant closed bosonic and Neveu-Schwarz string field theory which does not have any constraint on string functionals and gauge parameters. The relations to other formulations are clarified; in particular, it is shown that our theory recovers other formulation with constraints L+L = 0 after partial gauge fixing but without any truncation. Complete gauge fixing is also made and the expected propagator is obtained. The constraint L+L = 0 appears as a field equation in our formulation.  相似文献   

14.
Having studied the initial state energy loss versus nuclear shadowing for the Drell- Yan dimuon pair production in the color string model, the inhomogeneous shadowing effect is considered in this paper. We find that the inhomogeneous shadowing effect does amend the rate of energy loss per unit path length, -dE/ dz. Finally, the theoretical results for the Drell Yan differential cross-section ratios are compared with the E772 and E866 data. It is found that the theoretical results are in good agreement with the experimental data.  相似文献   

15.
Compact U(1) lattice gauge theory is studied in 2 + 1 and 3 + 1 dimensions using strong coupling series expansions and the recently proposed exact linled cluster expansion alborithm Results for the vacuum energy, specific heat and axial string tension in 2 + 1 dimensions are in agreement with previous finite lattice estimates. In 3 + 1 dimensions, we present new strong coupling series results (order g?40) which together with the ELCE estimates show evidence of a continuous phase transition at x = 1/g4 = 0.72 ± 0.08. The associated critical index for the vanishing string tension is μ = 0.65 ± 0.12. The axial string tension in D = 3 + 1 appears to undergo a non-deconfining roughening transition at smaller x (0.56 ± 0.07).  相似文献   

16.
Bianchi type I string dust cosmological models in the presence and absence of magnetic field in the frame work of Lyra geometry are investigated. To get the deterministic model of the universe, we assume that the eigenvalue (σ^11) of shear tensor (σ^ii) is proportional to expansion (θ). This leads to A = (BC)^n, where A, B, C are metric potentials and n is a constant. To discuss the results in terms of cosmic time t, we have considered n = 1. The physical and geometrical aspects' of the models and singularities in the models are also discussed.  相似文献   

17.
Utilizing the quantum statistical method and applying the new state density equation motivated by generalized uncertainty principle in quantum gravitaty, we avoid the difficulty in solving wave equation and directly calculate the partition function of bosonic and fermionic field on the background of rotating and charged black string. Then near the cosmological horizon, entropies of bosonic and fermionic field are calculated on the background of black string. When constant A introduced in generalized uncertainty principle takes a proper value, we derive Bekenstein- Hawking entropy and the correction value corresponding cosmologicaJ horizon on the background of rotating and charged black string. Because we use the new state density equation, in our calculation there are not divergent term and small mass approximation in the original brick-wall method. From the view of quantum statistic mechanics, the correction value to Bekenstein-Hawking entropy of the black string is derived. It makes people deeply understand the correction value to the entropy of the black string cosmological horizon in non-spherical coordinate spacetime.  相似文献   

18.
We argue that recent results in string perturbation theory indicate that the four-graviton amplitude of four-dimensional N=8 supergravity might be ultraviolet finite up to eight loops. We similarly argue that the h-loop M-graviton amplitude might be finite for h<7+M/2.  相似文献   

19.
It has been proposed recently that, in the framework of M(atrix) theory, = 8 supersymmetric U(N) Yang-Mills theory in 1 + 1 dimensions gives rise to type IIA long string configurations. We point out that the quantum moduli space of SYM1 + 1 gives rise to two quantum numbers, which fit very well into the M(atrix) theory. The two quantum numbers become familiar if one switches to a IIB picture, where they represent configurations of D-strings and fundamental strings. We argue that, due to the SL(2,Z) symmetry, of the IIB theory, such quantum numbers must represent configurations that are present also in the IIA framework.  相似文献   

20.
Sunil Mukhi 《Pramana》2000,54(4):543-559
In addition to being a prime candidate for a fundamental unified theory of all interactions in nature, string theory provides a natural setting to understand gauge field theories. This is linked to the concept of ‘D-branes’: extended, solitonic excitations of string theory which can be studied using techniques of string theory and which support gauge fields localized along their world-volumes. It follows that the techniques of string theory can be very useful even for those particle physicists who are not specifically interested in unification and/or quantum gravity. In this talk I attempt to review how strings help us to understand fields. The discussion is restricted to 3+1 spacetime dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号