首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
在近红外光谱数据定量建模中,数据的高冗余和高噪严重影响了建模的稳健性和精确性,因此提出了一种特征分层结合改进粒子群算法(PSO)的特征光谱选择方法。首先通过互信息度量特征的重要性得分,并按特征的重要性降序排序,有效避免了因采用降维方法得到主成分而引起的丢失重要信息的问题。其次,引入了跳跃度概念,并构造了一种特征分层的方法,重要性程度相似的特征并入同一个特征子集,将降序排列的特征集分割为不同的特征子集,避免了筛选特征过程中因人为设定特征重要性得分阈值而导致的不确定性。最后,采用收敛速度快、控制参数少的粒子群算法作为最优特征子集的优化方法,同时对粒子群算法做了两方面改进:引入混沌模型增加种群的多样性,提高了PSO的全局搜索能力,避免陷入局部最优;将特征数目引入到适应度函数中,在迭代前期通过惩罚因子调节特征数目对适应度函数的影响,提高了算法的适应能力。将分层后的数据以特征子集为单位,依次累加并作为改进粒子群算法的输入,从而选择出高辨别力的特征子集。以烟碱指标为例进行了特征选择过程的描述,实验采用尼高力公司的Antaris Ⅱ近红外光谱仪进行近红外光谱数据的采集,光谱扫描范围为4 000~10 000 cm-1。首先,利用互信息理论计算全光谱1 557个特征对待测指标定量建模的重要性得分,得分取30次实验的均值。其次,将所有特征按照重要性得分降序排序,计算所有特征的跳跃度,依据跳跃度寻找特征分层的临界点,将特征划分到不同的特征层中,构建了包含8个特征子集的特征集合S={S1, S2, S3, S4, S5, S6, S7, S8}。然后,依次将特征子集S1,{S1, S2},{S1, S2, S3},…,{S1, S2, S3, S4, S5, S6, S7, S8}作为初始粒子群的候选集,以R/(1+RMSEP)作为特征子集优劣的评价标准,各自重复实验50次,比值最大的特征子集即为最优特征子集。为验证该算法的有效性,选取了具有代表性烟叶近红外光谱数据作为训练集和测试集,建立了烟碱、总糖两个指标的PLS定量模型,并分别与全光谱、分层后的特征光谱、粒子群算法选出的特征光谱进行了比较。仿真结果表明,本算法所选特征烟碱、总糖的建模相关系数r分别为0.988 5和0.982 2,交互验证均方差RMSECV分别为0.098 4和0.889 3,预测均方根误差RMSEP分别为0.100 7和0.901 6,模型准确率均明显高于其他三种方法。从所选特征数来看,该算法所选特征数最少,有效剔除了原特征集中的弱相关和噪声、冗余信息,所建模型的主因子数最少,降低了模型的复杂性,模型更加稳健,适应性更广。  相似文献   

2.
“黑碧”指颜色为黑色,主要成分为阳起石的碧玉。电子探针、激光剥蚀电感耦合等离子体质谱仪分析显示“黑碧”为阳起石碧玉。拉曼光谱和红外光谱的OH振动处产生3个主峰,归属于MgMgMg-OH,MgMgFe2+-OH(Fe2+M1MgM1MgM3-OH,MgM1MgM1Fe2+M3-OH),MgFe2+Fe2+-OH(MgM1Fe2+ M1Fe2+M3-OH,Fe2+M1Fe2+M1MgM3-OH),但与常见和田玉不同,“黑碧”的三个主峰在拉曼光谱OH的振动区(3 600~3 700 cm-1)和红外光谱OH的倍频振动区(7 200~7 100 cm-1)产生分裂现象。将“黑碧”分为5个区域:HB-1,HB-2,HB-3,HB-4和HB-5,进行原位的电子探针和拉曼光谱分析,拉曼光谱在3 600~3 700 cm-1出现3个主峰(A,B,C),将主峰进行分峰拟合处理,显示分裂成6个次级峰(A′和A″,B′和B″,C′和C″),次级峰之间的平均波数差为5 cm-1。前人对角闪石在OH振动处主峰分裂现象的观点各不相同。结合“黑碧”的原位电子探针数据和相关研究文献,认为角闪石中B(M4)位置上的阳离子分布是分裂谱产生的主要原因。角闪石中的B(M4)位置虽然没有直接与W位置的OH相连接,但B(M4)位置上的阳离子通过影响TO4上的桥氧,间接影响W位置上的OH,从而引起OH振动光谱产生一定变化。对比存在类似分裂谱的角闪石样品和“黑碧”的晶体化学式,发现所有的样品在B(M4)位置上均存在Ca2+和Mn2+分布,而其他位置的阳离子占位情况都不相同,表明“黑碧”OH振动光谱产生分裂与B(M4)位置上的Ca2+和Mn2+分布有关。故认为“黑碧”中OH振动光谱产生分裂原因为Ca2+和Mn2+在B(M4)位置上的占位,且高波数峰位归属于Ca2+,低波数峰位归属于Mn2+,即A′,B,C′归属于Ca2+,A″,B″,C″归属于Mn2+。  相似文献   

3.
叶绿素是反映绿色植被健康状态的重要生理参数,虫害胁迫下叶绿素与叶光谱的变化机制较为复杂,深入剖析二者关系对于虫害检测有重要意义。以福建省南平市顺昌县为试验区,测定不同受害情景下毛竹叶叶绿素含量(SPAD)与叶光谱,采用Pearson相关法筛选叶光谱特征指标,建立叶SPAD的多元线性回归、岭回归、随机森林与XGBoost估测模型。通过比较光谱特征指标筛选结果及模型估测效果,分析刚竹毒蛾胁迫下毛竹叶绿素与叶光谱特征的关系及其变化。结果表明:(1)随着虫害程度上升,毛竹叶SPAD呈下降趋势;(2)较之于未受害状态,刚竹毒蛾胁迫下毛竹叶光谱特征发生明显变化,“绿峰”和“红谷”趋于消失,“红边”斜率减小,近红外波长反射率降低;(3)基于全样本拟合叶SPAD的最优光谱特征指标为VOG2,R515/R570,CIred,PRI与NDVI705,最佳估测模型为多元线性回归模型(R2=0.753 7,RMSE=3.015 0);(4)基于不同受害程度样本拟合毛竹叶SPAD,最优光谱特征指标分别为健康:CIred,VOG2,ARVI,R515/R570,DVI;轻度:RENDVI,RERVI,REDVI;中度:RENDVI,RERVI,REDVI;重度:VOG2,CIred,NDVI705,PRI;小年:PRI,NDVI705,VOG1,CIred。最佳估测模型为多元线性回归模型,模型精度分别为健康(R2=0.882 3;RMSE=1.638 8);轻度(R2=0.180 2;RMSE=3.335 4);中度(R2=0.360 4;RMSE=3.886 7);重度(R2=0.467 7;RMSE=2.601 8);小年(R2=0.732 4;RMSE=2.375 4)。由此发现,随着虫害等级上升,毛竹叶光谱特征指标也随之改变,关系模型估测精度呈现先急剧下降后缓慢抬升的态势,模型对健康与小年叶SPAD估测效果较好,对轻—中—重度危害叶SPAD估测效果较差;当毛竹叶SPAD与叶光谱特征的关系趋向紊乱时,预示可能有刚竹毒蛾危害发生。  相似文献   

4.
火龙果是近年来引进我国的营养价值高、经济效益好的新型水果,肉质茎枝是其主要光合器官,与常见果树具有较大差异。为探索以茎枝为光合作用器官的植被的光谱特征及其生化组分的估测方法,以火龙果为研究对象,在贵州省典型种植区罗甸县开展了4个氮肥梯度田间试验,同步测定不同养分丰缺程度下的火龙果茎枝高光谱和相应叶绿素含量数据;然后分析火龙果茎枝光谱数据的演化规律,并采用数学变换、连续小波变换算法并结合相关性分析算法处理分析火龙果茎枝光谱数据,提取并筛选特征波段;最后利用偏最小二乘算法构建火龙果茎枝叶绿素含量估测模型。研究结果表明:(1)火龙果肉质茎枝的原始光谱曲线整体趋势与常见绿叶植物相似,但随施氮量的增加,火龙果近红外处的光谱反射率逐渐降低,变化趋势与常见绿叶植物相反,茎枝光谱的吸收峰(谷)随施氮量的增加呈升高(加深)的趋势。(2)数学变换中的一阶微分与在L1-L5尺度内的连续小波变换能有效提升光谱对叶绿素含量的敏感性,火龙果茎枝原始光谱与叶绿素含量的敏感区域主要位于730~1 400 nm,数学变换与连续小波变换均能提升光谱对叶绿素含量的敏感性。与常见绿叶植物相比,火龙果茎枝敏感波段分布相对分散,且多位于730 nm附近与近红外区域(1 100~1 600 nm)。(3)数学变换和连续小波变换能明显提升光谱对火龙果茎枝叶绿素含量的估测能力,其中基于一阶微分的估测模型与基于连续小波变换L1与L4的估测模型分别为数学变换与连续小波变换的最优模型,其验证精度分别为R2验证=0.625,RMSE=0.048,RPD=1.238(一阶微分);R2验证=0.678,RMSE=0.037,RPD=1.652(连续小波变换);表明高光谱技术可以作为火龙果茎枝叶绿素含量和营养诊断的无损监测手段。该研究为完善不同植被类型基于高光谱指数的叶绿素反演提供了补充。  相似文献   

5.
针对基于固定特征波长的植被指数不能适用于多个生育期叶绿素含量的诊断这一问题,研究优化提出一种基于双波长计算光谱覆盖面积的叶绿素诊断植被指数,用于稳健地诊断多生育期的营养。以拔节期、孕穗期和扬花期的冬小麦为研究对象,采集其325~1 075 nm范围的冠层反射光谱,测定采样样本的叶绿素含量。采用小波去噪和多元散射校正算法对光谱数据进行预处理。通过相关性分析,确定生育期特征波长的迁移范围,进而提出了基于光谱覆盖面积的冬小麦叶绿素含量光谱诊断参数(modified normalized area over reflectance curve, MNAOC)。以信噪比(SNR)和平滑度指标(S)进行综合评价,小波去噪函数的最佳参数为(“sqtwolog”,“mln”,“3”,“db5”)。相关性分析结果表明,生育期特征波段的迁移范围为(700 nm,723 nm)。在分析MNAOC指数对叶绿素含量诊断分辨率的基础上,以0.5 mg·L-1的分辨率建立一元线性回归模型的结果为:拔节期R2c=0.840 1,R2v=0.823 7;孕穗期R2c=0.865 5,R2v=0.817 4;扬花期R2c=0.833 8,R2v=0.807 6。与ratio vegetation index(RVI)等5种双波长植被指数对比表明,由于700和723 nm计算的光谱面积包含了由于生育期导致的光谱动态迁移特征,使得MNAOC指数在模型精度上和多个生育期的普适性上,都优于其他双波长代数运算植被指数,为大田环境冬小麦生育期叶绿素含量诊断提供支持。  相似文献   

6.
为探究遥感监测水稻冠层叶片氮素含量的较优高光谱反演模型,以水稻小区试验为基础,获取了不同生长期水稻冠层高光谱数据。在综合比较一阶导数变换(1-Der)、标准正态变量变换(SNV)和SG滤波法等处理方法基础上,提出一种将SNV与一阶导数变换的SG滤波法相结合的光谱处理方法(SNV-FDSGF),并将处理后的数据经无信息变量消除法(UVE)与竞争自适应重加权采样法(CARS)选出不同生长期的敏感波段。将各生长期的敏感波段两两随机组合,并构建与水稻叶片含氮量相关性较高的差值光谱植被指数(DSI)、比值光谱植被指数(RSI)、归一化光谱植被指数(NDSI)。其中分蘖、拔节和抽穗3个时期的最优植被指数和决定系数R2分别为:DSI(R857, R623), 0.704; DSI(R670, R578), 0.786; DSI(R995, R508), 0.754。以各生长期内的较优的三种植被指数作为输入分别构建自适应差分优化的极限学习机(SaDE-ELM)、径向基神经网络(RBF-NN)以及粒子群优化的BP神经网络(PSO-BPNN)反演模型。结果表明:SaDE-ELM建模效果最好,在模型稳定性和预测能力上比RBF-NN和PSO-BPNN都有了明显提高,各生长期反演模型的训练集和验证集决定系数R2均在0.810以上,RMSE均在0.400以下,可为东北水粳稻冠层叶片含氮量的检测与评估提供科学和技术依据。  相似文献   

7.
光谱成像技术广泛应用于植物理化参数无损伤测定等领域研究,而色素与色彩参数相关性研究也有学者探索。但比较并优选分别以色彩参数值、光谱参数值作为自变量与色素含量拟合出的模型,还未见报道。本实验以5种针叶树种为研究对象,筛选蓝边幅值Db、黄边幅值Dy、红边幅值Dr、绿峰幅值Rg、红谷幅值Rr、蓝边面积SDb、黄边面积SDy、红边面积SDr、比值植被指数RVI、差值植被指数DVI、归一化植被指数NDVI 11种光谱植被参数作为该光谱分析的基础,将实测针叶色彩参数值、光谱参数值分别作为自变量,采用多元线性逐步回归方法(SMLR)预估色素含量建立模型,以R2、RMSE为评价标准,对比选出模型精度最高的参数组合应用于实践。研究结果表明:(1) 树种间针叶色素含量、色相参数值、光谱反射率均存在一定差异(p<0.05)。(2) 树种间针叶光谱反射率红松显著低于北美短叶松、樟子松、赤松(p<0.05),针叶树种原始光谱在可见光波段500和680 nm附近呈现“蓝谷现象”和“红谷现象”,在550和760 nm波段附近呈现“绿峰现象”和“红边现象”;一阶微分光谱反射率在700 nm附近产生剧烈变化。(3) 色素含量与色彩参数、光谱反射率、光谱特征参数存在显著线性关系。(4) 花青素和叶绿素分别以L,a*和L,a*,b*,S色彩参数组合为自变量时,拟合模型R2最高,分别为0.588和0.638;而类胡萝卜素、叶绿素a、叶绿素b都是以FD652,FD700,SDb,SDy,RVI,DVI和NDVI光谱参数组合为自变量时,拟合模型R2最高,分别为0.779,0.786,0.774。该研究运用高光谱相机、色彩色差仪、紫外-可见分光光度仪实现了快速预估针叶色素含量,在色彩参数值与光谱值都与色素含量存在显著相关性的基础上,成功选出建立模型精度最高的参数组合,在针叶树种色素预估时可以根据精度需求及研究条件选择不同方法和参数值。  相似文献   

8.
虫害检测算法研究是开展虫害快速、准确监测,制定精准森防检疫措施的重要基础。以毛竹叶片为研究尺度,基于刚竹毒蛾危害下的寄主外部形态与内部生理现象总结,选择并实测叶损量LL、相对叶绿素含量RCC、相对含水量RWC、原始光谱的733.66~898.56 nm值(ρ733.66~898.56)、一阶微分光谱的562.95~585.25 nm值(ρ562.95~585.25)与706.18~725.41 nm值(ρ706.18~725.41)等理化参数,随机划分实验组(63组)和验证组(37组)并设计5次重复实验;分别运用Fisher判别分析、BP神经网络、随机森林等三种方法建立刚竹毒蛾危害等级的检测模型,从检测精度、Kappa系数及R2等指标对模型的检测效果予以分析和比较。结果显示,Fisher判别分析、BP神经网络、随机森林的检测精度分别为69.19%,65.41%,83.78%,Kappa系数分别为0.576 9,0.532 4和0.778 8,R2分别为0.722 2,0.582 6和0.870 9,总体而言,三种方法均具备刚竹毒蛾危害的检测能力,随机森林的检测效果最优,Fisher判别分析次之,再次为BP神经网络;从分等级来看,随机森林的检测精度亦优于Fisher判别分析与BP神经网络,但3种方法对中度危害等级的检测精度均有所不足。该成果可为刚竹毒蛾危害及其他病虫害检测算法的选择提供参考,并为进一步建立冠层、遥感影像像元等尺度的虫害检测模型奠定基础。  相似文献   

9.
产于黑龙江的“北红玛瑙”与四川凉山、云南保山的“南红玛瑙”是我国珠宝市场上常见的红色玛瑙,然而相应的产地特征研究较少,结合色度学、拉曼光谱、X射线粉晶衍射分析对三个产地的73件红色玛瑙的色度学、矿物学、光谱学特征进行了对比分析。结果表明,“北红玛瑙”的主要物相组成为α-石英和斜硅石,次要矿物组成为针铁矿、赤铁矿;四川凉山与云南保山“南红玛瑙”的主要物相组成为α-石英,次要矿物为赤铁矿、针铁矿、方解石等,少量样品含有斜硅石。黑龙江“北红玛瑙”的颜色主波长范围为574~605 nm,集中于[580, 590]区间,对应黄色-橙黄色-橙色色调,CIE1976Lab色空间中a≤6.2,b≤6.3;四川凉山“南红玛瑙”的主波长范围为589~624 nm,云南保山“南红玛瑙”主波长范围为589~599 nm,两个产地的“南红玛瑙”主波长均集中于[590, 600]区间,对应橙色-橙红色色调,大部分样品a>6.2或b>6.3,整体而言相比“北红玛瑙”颜色色调偏红,其彩度和亮度总体上也高于“北红玛瑙”。拉曼光谱中,斜硅石Si-O-Si对称伸缩-弯曲振动引起的501 cm-1峰在“北红玛瑙”中的强度高,在两个产地的“南红玛瑙”中不存在或者强度弱。斜硅石与α-石英特征峰强度比(I501/I463)和面积比(A501/A463)结果基本一致,在研究及鉴定过程中可以根据实际情况灵活选择。拉曼光谱粉末法测得的斜硅石与α-石英特征峰强度比(I501/I463)和面积比(A501/A463)结果位于大量随机点测的范围内,在日常鉴定中可以用多次无损点测的方法来获得接近粉末法的结果。黑龙江“北红玛瑙”的特征峰面积比(A501/A463)稳定在0.15~0.36,而四川凉山与云南保山“南红玛瑙”稳定在0.00~0.08,指示了两个产地“南红玛瑙”的斜硅石相对含量比“北红玛瑙”少,推测是两地的“南红玛瑙”在初期形成后都经历了较强的脱水和重结晶作用过程,使斜硅石转化成低温的α-石英所致。可以综合利用色度学特征及拉曼光谱,结合斜硅石与α-石英谱特征峰强度比(I501/I463)或面积比(A501/A463),对产于黑龙江的“北红玛瑙”以及四川凉山、云南保山的“南红玛瑙”进行区分,这也对玛瑙的产地鉴定、出土文物溯源等具有重要意义。  相似文献   

10.
天然气作为一种清洁、高效的低碳能源,消费占比日益增大。无论是地下输气管道还是储气库,由于管道腐蚀、老化、自然灾害,地下断层、注入井封存不好等因素,都会导致天然气泄漏。从安全、经济、环境等方面考虑,开展地下天然气管道和储气库微泄漏检测是十分必要的。利用高光谱遥感监测地表植被变化而间接探测天然气微泄漏点,通过野外可控系统模拟地下储存天然气微泄漏实验,以冬小麦为研究对象,采集了9期小麦冠层光谱数据,通过光谱分析探寻胁迫小麦光谱特征并构建指数识别模型。首先对小麦冠层光谱进行奇异值剔除和平滑处理,对连续统去除之后的冠层光谱进行连续小波变换,选用Mexihat母小波,在尺度参数为32时,小波系数有较少的峰值和谷值,能与原始光谱拟合较好,且小麦多期数据其峰值和谷值位置都比较稳定。受胁迫和健康小麦的原始光谱可分性较差,但小波系数在487,550和770 nm处受胁迫与健康小麦样本可分性较优,且具有明显的诊断性特征:(1)受胁迫和健康小麦的小波系数在487 nm处为“吸收谷”,其小波系数值为负值,健康小麦小波系数值大于受胁迫小麦的;(2)受胁迫和健康小麦的小波系数在550和770 nm处,有明显的“反射峰”,且受胁迫小麦的小波系数值较大。为更好突出差异性,增强受胁迫和健康小麦的小波系数差异特征,构建了CWTmexh(CWTmexh=CW2770/(1-CW487)·CW550)指数用于胁迫与健康小麦的识别;然后分别与NDVI705,mNDVI705,ARI1,R440/R740,D725/D702指数进行对比分析,经J-M距离定量检验,结果显示CWTmexh指数对天然气微泄漏胁迫下的冬小麦具有较好的识别效果,该指数在天然气胁迫发生20 d后可以稳定区分胁迫和健康两类小麦,且在全生育期都保持相同的规律,而NDVI705,mNDVI705,ARI1等指数在整个生育期内无法准确识别健康与胁迫小麦。CWTmexh指数在稳定性、普适性与可识别性方面优于其他5个指数。因此,高光谱遥感监测地表植被间接识别天然气微泄漏点具有可行性,研究结果可为星载高光谱遥感监测地下储存天然气泄漏点提供理论依据和技术支持。  相似文献   

11.
基于分数阶微分算法的大豆冠层氮素含量估测研究   总被引:3,自引:0,他引:3  
氮素与作物的生长发育、产量和品质密切相关。作物冠层氮素含量的快速、准确、无损检测对于作物营养诊断和长势评估具有重要意义。传统的氮素检测方法检测周期长、操作复杂,同时具有破坏性,无法实现作物氮素含量在时间和空间上的连续动态监测。基于光谱遥感技术快速、无损地获取作物氮素含量是近年来作物组分快速检测研究的热点。当前的研究大多基于原始光谱或整数阶微分(一阶、二阶)预处理后的光谱进行氮素含量预测,原始光谱或整数阶微分预处理后的光谱会忽略光谱曲线间的渐变信息,影响氮素含量的预测准确度。与原始光谱和整数阶微分方法相比,分数阶微分算法在背景噪声去除、有效信息提取等方面较有优势。为研究分数阶微分预处理算法在作物氮素检测中的应用,本文以不同施肥处理下的盆栽大豆作物为研究对象,获取大豆苗期、花期、结荚期和鼓粒期四个生育期共256组冠层高光谱及对应的大豆冠层氮素含量(CNC)数据,运用分数阶微分算法对光谱数据进行0~2阶微分预处理,微分间隔为0.1,分别采用归一化光谱植被指数NDSI、比值光谱指数RSI对预处理后的光谱数据和大豆冠层氮素含量数据进行相关性分析,得到各阶微分预处理下NDSIα(α代表分数阶微分阶数)与大豆CNC,RSIα与大豆CNC相关系数绝对值的最大值及其对应的波段组合--最优波段组合NDSIα(opt)和RSIα(opt),采用线性回归方法,建立各阶微分下NDSIα(opt)与CNC,RSIα(opt)与CNC的预测模型,并与常用植被指数(VOGII, MTCI, DCNI, NDRE)建立的氮素含量预测模型进行比较,研究分数阶微分算法对大豆作物冠层氮素含量预测模型的效果。结果表明:(1)在0~2阶微分范围内,最优波段组合NDSIα(opt),RSIα(opt)与大豆CNC的相关系数随阶数增加呈现先升高后下降趋势。其中,0.8阶微分下NDSI0.8(R725, R769)与大豆CNC的相关系数最大,为0.875 9;0.7阶微分下RSI0.7(R548, R767)与大豆CNC的相关系数最大,为0.865 1;(2)分数阶微分预处理能够细化光谱数据中的有效信息,增强光谱数据对冠层氮素含量的敏感性,尤其是增强红边平台波段与氮素含量的正相关性及绿波段与氮含量的负相关性;(3)与整数阶微分、常用植被指数相比,分数阶微分能够提高大豆CNC预测模型的准确性。其中,基于0.7阶微分RSI0.7(R548, R767)建立的大豆CNC预测模型与0阶微分RSI0(R725, R769)相比建模集决定系数(R2C)和预测集决定系数(R2P)分别提高了0.061 9和0.016 6,建模集均方根误差(RMSEC)和预测集均方根误差(RMSEP)分别降低了0.552 5和0.180 9,预测相对偏差(RPD)提高了0.110 4。基于0.7阶微分RSI0.7(R548, R767)建立的大豆CNC预测模型与VOG II相比R2CR2P分别提高了0.086 6和0.025 5,RMSEC和RMSEP分别降低了0.757 5和0.248 3,RPD提高了0.146 88;(4)基于0.7阶微分比值光谱指数RSI(R548, R767)建立的大豆LNC预测模型较优,其R2C为0.748 4,R2P为0.800 3,RMSEC为4.752 9,RMSEP为3.511 1,RPD为2.253 7,能够较好的估测大豆冠层氮素含量。研究表明分数阶微分算法在大豆冠层氮素含量的定量预测中具有一定的优势,为光谱遥感技术在作物氮营养检测中的应用开拓了新的思路。  相似文献   

12.
在水果的品质检测和分级分选中,存在不同仪器所建检测模型难以共享的难题。为此,以壶瓶枣为研究对象,利用可见/近红外光谱技术探讨仪器间可溶性固形物含量(SSC)检测模型的传递方法。首先,采用美国ASD(Analytical Spectral Device)公司生产的两台仪器采集样本的光谱信息,采用最小二乘支持向量机(LS-SVM)建立原始光谱、Savitzky-Golay一阶导数处理、标准正态变量变换后的SSC检测模型,预测不同仪器采集的光谱时3种方法的预测能力均较差。预测同一台仪器的光谱时,基于原始光谱的主仪器所建模型最优,预测集的决定系数(R2p)和均方根误差(RMSEP)分别为0.73和1.36%。在此基础上,采用Kennard/Stone算法选取标样,利用专利算法(Shenk’s)、直接标准化(DS)、斜率/偏差算法(S/B)进行模型传递。然后,根据回归系数提取主仪器(24个)和从仪器(28个)的特征波长,优选出单一变量(SV)24个、共性变量(CV)23个、融合变量(FV)29个,均涵盖了SSC的主要吸收谱带。利用优选的变量分别建立主仪器的LS-SVM检测模型,采用主仪器的预测结果(R2p=0.78~0.80,RMSEP=1.07%~1.13%)明显好于全波段所建模型,但预测从仪器时RMSEP为6.62%~7.88%,模型失效。最后,基于波长位置偏移和分子振动的吸收特性提出了共性变量优选结合差值补正(CV-MC)、单一变量优选结合差值补正、融合变量优选结合差值补正、共性变量优选结合波长补正算法(CV-WC)进行模型传递,并与SV-Shenk’s,CV-Shenk’s,FV-Shenk’s,SV-DS,CV-DS,FV-DS,SV-S/B,CV-S/B和FV-S/B进行对比分析。结果表明,基于全波段进行模型传递时,预测结果均较差(R2p=0.03~0.34,RMSEP=2.44%~4.67%);基于优选变量所建模型经SV-Shenk’s,CV-Shenk’s,FV-Shenk’s传递后的结果较差,经其他算法传递后的结果(R2p=0.47~0.73,RMSEP=1.30%~1.90%)好于全波段;基于共性变量传递后的结果好于单一变量和融合变量,CV-MC结果最佳(R2p=0.73,RMSEP=1.30%),CV-WC传递后的预测结果(RMSEP=1.62%)与CV-DS和CV-S/B相近。研究表明,CV-MC和CV-WC均是一种有效模型传递算法,对建立不同仪器间通用的鲜枣品质检测模型具有重要意义。  相似文献   

13.
嫩度是猪肉食用品质最重要的指标之一。猪肉嫩度取决于猪肉组织复杂的物理、化学特性,目前难以实现快速无损伤检测。探索空间分辨光谱技术用于生鲜肉嫩度无损检测的可行性。首先利用点光源高光谱扫描系统采集54块猪肉背最长肌的空间可分辨散射光谱,经过感兴趣区域选择,提取出猪肉样本表面光斑的空间扩散轮廓,结合4-参数洛伦兹分布函数对扩散轮廓进行非线性拟合,拟合优度R2>0.992,并通过残差分析,表明4-参数洛伦兹分布函数符合肉样表面光强的空间散射规律,进而提取出480~950 nm波长下空间分辨光谱的四个形态学参数:渐进值a、峰值b、半带宽c以及半带宽处的斜率d。然后将单参数谱分别与猪肉样本Warner-Bratzler剪切力(WBSF)测量值进行偏最小二乘回归(PLSR)分析。结果表明不同参数谱都含有猪肉嫩度信息,其中峰值参数谱b建模效果最佳,其回归模型的校正集决定系数R2c为0.674,均方根误差SEC为8.396N,预测集决定系数R2p为0.610,均方根误差SEP为8.643N。为提高模型的预测精度和稳定性,实现多参数谱信息的融合,先通过PLSR分析,分别提取出每个参数谱中对猪肉嫩度方差贡献大的公共因子,然后将其因子得分组合在一起作为参数谱的特征变量,与猪肉样本WBSF测量值作多元统计回归分析。为避免数据冗余,对不同参数谱特征变量进行多重共线性判别,进一步采用PLSR算法对参数谱特征变量进行降维和变换,采用交叉验证方法,选择前两维因子得分进行校正模型的建立。其中所提取第一维公共因子对猪肉WBSF值方差解释率达92.28%。与单参数谱所建PLSR模型相比,多参数谱信息融合模型预测效果有了较大提高,其R2cR2p分别为0.923和0.800,SEC和SEP分别为4.083N和5.655N。通过对回归系数进行统计量t检验,结果表明所有回归系数极显著(p<0.01)。本研究通过采取多参数信息融合方法为空间分辨光谱在生鲜肉嫩度无损检测应用提供一种思路,该方法有效将空间分辨光谱解析为4个形态学参数,并实现不同参数谱信息的提取和融合,为开发基于空间分辨光谱的生鲜肉嫩度无损快速检测装备提供技术支撑。  相似文献   

14.
[Fe(0.5 nm)/Pt(0.5 nm)]40, [Fe(1 nm)/Pt(1.5 nm)]20 and [Fe(3 nm)/Pt(3 nm)]10 multilayer were prepared by DC magnetron sputtering. By conventional furnace annealing (CA) at 270–600 °C for various time, all of the films still remained the disordered structure with the soft magnetic phase. By rapid thermal annealing (RTA) at 500 °C for various time, we obtained the [Fe(1 nm)/Pt(1.5 nm)]20 and [Fe(3 nm)/Pt(3 nm)]10 films with L12 ordered FePt3 phase which was almost ferromagnetic at room temperature. However, the [Fe(0.5 nm)/Pt(0.5 nm)]40 films was still disordered state even under RTA. Compared with CA, RTA exposed an outstanding effect on accelerating the phase transition when the film thickness is over [Fe(0.5 nm)/Pt(0.5 nm)]40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号