首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
闫悦  赵谡玲  徐征  龚伟  王大伟 《物理学报》2011,60(8):88803-088803
以ZnO纳米棒和聚[2-甲氧基-5-(2-乙基-己氧基)-1,4-苯撑乙烯撑](MEH-PPV)的复合体系作为光敏层制备了太阳电池.为了增大电池的光吸收,在ZnO纳米棒与MEH-PPV之间插入了有机n型小分子多环类苝四甲酸二酐(PTCDA),制备了不同厚度的PTCDA、结构为ITO/ZnO纳米棒/PTCDA/MEH-PPV/Au的太阳电池.实验发现,插入PTCDA后,电池在可见光区的吸收增强,光生激子数量增大,光电流密度增大.当蒸镀的PTCDA厚度为40 nm时,薄膜的粗糙度适中,表面形貌较为平滑,器件性 关键词: 有机太阳电池 ZnO纳米棒 聚合物  相似文献   

2.
GaN nanorods are fabricated using inductively coupled plasma etching with Ni nano-island masks.The poly[2-methoxy-5-(2-ethyl)hexoxy-1,4-phenylenevinylene](MEH-PPV)/GaN-nanorod hybrid structure is fabricated by depositing the MEH-PPV film on the GaN nanorods by using the spin-coating process.In the hybrid structure,the spatial separation is minimized to achieve high-efficiency non-radiative resonant energy transfer.Optical properties of a novel device consisting of MEH-PPV/GaN-nanorod hybrid structure is studied by analyzing photoluminescence(PL) spectra.Compared with the pure GaN nanorods,the PL intensity of the band edge emission of GaN in the MEH-PPV/GaN-nanorods is enhanced as much as three times,and the intensity of the yellow band is suppressed slightly.The obtained results are analyzed by energy transfer between the GaN nanorods and the MEH-PPV.An energy transfer model is proposed to explain the phenomenon.  相似文献   

3.
利用ZnO纳米棒阵列场发射电极,以SiO2做为电子加速层制备了固态阴极射线器件,发光层为聚[2-甲氧基-5-(2-乙基-己氧基)-1,4-苯撑乙烯撑](MEH-PPV),在交流驱动下得到了MEH-PPV的固态阴极射线发光,探测到了长波峰和短波峰的发射,并和无电子加速层的器件做了比较,证明混合激发模式下的器件在长波长的发光亮度更大. 关键词: 固态阴极射线 ZnO纳米棒阵列 电子加速 电致发光  相似文献   

4.
对一维纳米材料在空穴缓冲层PEDOT中的作用进行了研究。光致发光表明在PEDOT中掺杂一维纳米材料(二氧化钛纳米管和氧化锌纳米棒)可以提高双层样品PEDOT/MEH-PPV的发光效率。拉曼光谱的结果说明正是由于一维纳米材料与PEDOT之间存在的强相互作用,才减少了PEDOT/MEH-PPV界面上猝灭发光的缺陷态的产生。在以MEH-PPV作为发光层的聚合物电致发光器件中,在PEDOT中掺杂二氧化钛纳米管和氧化锌纳米棒后,器件的最大效率分别提高了2倍和2.5倍。  相似文献   

5.
氧化锌纳米颗粒薄膜的近紫外电致发光特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
高松  赵谡玲  徐征  杨一帆  刘志民  谢小漪 《物理学报》2014,63(15):157702-157702
利用溶胶-凝胶法(sol-gel method)制备了ZnO纳米颗粒薄膜(ZnO nanoparticle film),并以此为发光层制备了结构为ITO/ZnO nanoparticle/MEH-PPV/LiF/Al的电致发光器件.通过调整器件发光层厚度,对器件的发光光谱和电学特性进行测试研究,发现该器件在一定的直流电压下可以得到以ZnO近紫外(中心波长390 nm)发光为主的电致发光光谱,显示出较好的ZnO近紫外电致发光特性.对该器件的发光机理进行了一定的研究,认为该器件的发光是基于载流子隧穿.  相似文献   

6.
Luminescence properties of nanocomposites consisting of ZnO nanoparticles in a conjugated polymer, poly [2-methoxy-5-(2′-ethyl hexyloxy)-phenylene vinylene] (MEH-PPV), were investigated. Photoluminescence measurements reveal a blue shift in the emission spectrum of MEH-PPV upon incorporation of ZnO nanoparticles into the polymer film while the emission is increasingly quenched with increasing ZnO concentration. In contrast, the structure of the polymer and its conjugation length are not affected by the presence of ZnO nanoparticles (up to 16 wt% ZnO) as revealed by Raman spectroscopy. The blue shift and photoluminescence quenching are explained by the separation of photogenerated electron-hole pairs at the MEH-PPV/ZnO interface and the charging of the nanoparticles.  相似文献   

7.
以MEH-PPV(poly(2-methoxy-5-(2′-ethylhexoxy)-1,4-phenylene vinylene)为电子给体材料(Donor,D), TiO2纳米线为电子受体材料(Acceptor,A),制成了共混体系太阳电池. 从D/A材料共混体系的紫外可见吸收光谱(UV-vis)、光荧光谱(PL)、器件的电荷传输的光导J-V图等方面,分析了MEH-PPV∶TiO2体系器件性能变化的原因. 得出了当在纯MEH-PP 关键词: 太阳电池 聚合物 性能  相似文献   

8.
MEH-PPV/ZnO纳米晶无机有机复合电致发光器件的研究   总被引:2,自引:1,他引:1  
以Ⅱ一Ⅵ族无机半导体ZnO纳米颗粒为电子传输层,MEH-PPV为空穴传输层兼发光层,得到的电致发光器件比单层MEH-PPV器件的发光亮度和效率都明显提高。器件结构为ITO/MEH-PPV/ZnO/Al的电致发光光谱同单层PPV器件的光谱出现了不同,在620nm处出现了一个小的发光峰,应该是ZnO的发光。另外,双层结构器件的启亮电压由单层器件的9V降到了4V左右。由I-V曲线及发光光谱可判断出发光区域应在MEH-PPV/ZnO界面处,并且复合区域可能随着电压的变化而变化。  相似文献   

9.
利用简单的水热法在ZnO纳米棒表面合成CdS纳米粒子.用扫描电镜(SEM)和X射线衍射(XRD)对CdS/ZnO异质结构进行表征.实验结果表明,在生长CdS的过程中ZnO被逐渐地腐蚀.选择CdS/ZnO纳米复合材料作为光催化剂在紫外光和绿光照射的条件下降解甲基橙(MO).CdS/ZnO纳米复合材料纳米棒作为光催化剂降解...  相似文献   

10.
Vertically aligned ZnO nanorod arrays with different aspect ratios were synthesized by hybrid wet chemical route. Modulation of the field emission properties (FE) with aspect ratio of ZnO nanorods was examined. With the increase in the aspect ratio, the emission current density increases from 0.02 to 8 μA/cm2 at 7.0 V/μm. Turn-on voltage was seen to decrease from 9.6 to 7 V/μm at a current density of 10 μA/cm2 with the increase in aspect ratio in the ZnO films. The interrelation between the FE characteristics (emission thresholds, current density, surface uniformity, etc.) and microstructure of the ZnO nanostructure obtained from scanning electron microscopy (SEM) and atomic force microscopy (AFM) was discussed. Quality of the ZnO nanorods was also examined by using Raman spectroscopy and Fourier transformed infrared spectroscopy (FTIR). It was found that the observed enhancements of FE characteristics could mainly be attributed to the increase in aspect ratio and associated number density of ZnO nanorods.  相似文献   

11.
The absorption and photoluminescence (PL) spectra of MEH-PPV: ZnO composite films have been investigated at different concentrations of ZnO nanoparticles and at different temperatures (in the case of PL). It has been shown that, at 297 K, with increasing concentration of ZnO nanoparticles in the composite, the intensity of the PL lines of MEH-PPV decreases, whereas the intensity of the PL lines of ZnO increases. At a relatively low concentration of ZnO nanoparticles, a decrease in the temperature leads to an increase in the intensity of PL lines associated with MEH-PPV and ZnO, whereas at higher concentrations of ZnO nanoparticles, the intensity of these lines decreases. This is accompanied by a slight shift in the maximum of the PL toward the infrared (IR) region and a narrowing of the PL line of MEH-PPV with a decrease in the temperature and with an increase in the ZnO concentration. The mechanism of energy transfer in composite systems consisting of a polymer and inorganic nanoparticles that can be responsible for the observed effects has been discussed.  相似文献   

12.
This work presented a hybrid architecture of graphene oxide (GO)/ZnO nanorods (ZNs) with ZNs attached parallel onto GO sheets. ZNs were synthesized by refluxing zinc acetate dehydrate in methanol solution under basic conditions followed by surface modification of 3-aminopropyl triethoxysilane (ATS), and then the preformed ZNs were attached onto GO sheets by reaction of the amino groups on the outer wall of ZNs with the carboxyl groups on the GO surface. Transmission electron microscopy (TEM) image of the as-prepared hybrid reveals the morphology of the architecture of GO/ZNs hybrid. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) ultraviolet-visible (UV-vis) and fluorescence spectroscopy were also performed to characterize the structure and properties of the GO/ZNs hybrid. It was shown that ZNs maintained their initial morphology and crystallinity in the hybrid and the luminescence quenching of yellow-green emission of ZNs confirmed the electron transfer from excited ZnO to GO sheets.  相似文献   

13.
在固态阴极射线发光中,过热电子碰撞激发有机材料而发光,因此加速层对电子的加速能力是影响器件发光亮度的关键因素之一.分别以SiO2和ZnO作为加速层.制备出两种固态阴极射线发光器件A:ITO/MEH-PPV/SiO2/Al和B:ITO/MEH-PPV/ZnO/Al.通过理论计算比较了电子从电极注入到加速层的隧穿电流密度以及SiO2层与ZnO层的电场强度,计算结果表明:在相同驱动电压下,SiO2作为电子加速层时隧穿电流的密度要大于ZnO层的隧穿电流的密度,并且SiO2层的电场强度比ZnO层的电场强度大.实验结果表明:SiO2作为加速层的器件的发光强度高于以ZnO为电子加速层器件的发光强度.  相似文献   

14.
Two kinds of inorganic/organic hybrid junctions based on ZnO nanorods (NRs), i.e. two-layer planar heterojunction and embedded bulk composite structures, were fabricated on ITO glass substrates. Surface photovoltage (SPV) methods based on a Kelvin probe and a lock-in amplifier were respectively utilized to study the photogenerated charges at the surface and the interface in the ZnO-based hybrid junctions. Results indicate that the lock-in SPV response of the bulk composite structure is much higher than its planar counterpart in terms of intensity and spectral range. Therefore, ZnO NR/PF (poly(9,9-di-n-octylfluorenyl-2,7-diyl)) embedded bulk composite structures are more suitable and preferred for photovoltaic application.  相似文献   

15.
Flower-like ZnO nanorods have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si (1 0 0) substrates without any catalyst. The structures, morphologies and optical properties of the products were characterized in detail by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and Raman spectroscopy. The synthesized products consisted of large quantities of flower-like ZnO nanostructures in the form of uniform nanorods. The flower-like ZnO nanorods had high purity and well crystallized wurtzite structure, whose high crystalline quality was proved by Raman spectroscopy. The as-synthesized flower-like ZnO nanorods showed a strong ultraviolet emission at 386 nm and a weak and broad yellow-green emission in visible spectrum in its room temperature photoluminescence (PL) spectrum. In addition, the growth mechanism of the flower-like ZnO nanorods was discussed based on the reaction conditions.  相似文献   

16.
A novel self‐assembled organic–inorganic hybrid structure consisting of zinc oxide and two oppositely charged porphyrins, showing significantly enhanced photocatalytic activity, is presented. Electrostatic self‐assembly of the cationic tetra‐(N‐methyl‐4‐pyridyl)porphyrin (TMPyP) with preformed assemblies of ZnO nanorods and the anionic tetra‐(4‐sulfonatophenyl)porphyrin (TPPS) in ethanol results in porphyrin microrhombuses decorated with ZnO nanorods. The structure formation is followed spectroscopically. The shape of the microrhombuses and the number of attached ZnO nanoparticles can be tuned through the porphyrin ratio TMPyP/TPPS. An enhanced and selective catalytic activity is found, giving insight into the degradation mechanism. Due to the tool‐box principle and its versatility, the concept may have great impact in fields such as solar‐energy conversion and optoelectronics.  相似文献   

17.
王长远  杨晓红  马勇  冯媛媛  熊金龙  王维 《物理学报》2014,63(15):157701-157701
采用水热法制备了ZnO和不同掺杂浓度的ZnO:Cd纳米棒,通过SEM,XRD、拉曼光谱等的分析,研究了ZnO和ZnO:Cd的微结构并测试分析了其光致发光特性.结果表明,ZnO和ZnO:Cd纳米棒呈六角纤锌矿结构,Cd掺杂使得纳米棒体积更小.由于内部张应力的影响,Cd掺杂使得材料光学带隙减少.当掺杂浓度为2%时,合成的材料光致发光谱中出现了位于2.67 eV处,由导带底和Zn空位(VZn)缺陷能级跃迁造成的蓝光发射峰,并且Cd的掺入使得位于2.90 eV附近的紫光发射峰强度增强,对于研究ZnO蓝紫发光器件具有重要的意义.  相似文献   

18.
A two-step method is adopted to synthesize Ag-doped ZnO nanorods.A ZnO seed layer is first prepared on a glass substrate by thermal decomposition of zinc acetate.Ag-doped ZnO nanorods are then assembled on the ZnO seed layer using the hydrothermal method.The influences of the molar percentage of Ag ions to Zn ions(RAg/Zn) on the structural and optical properties of the ZnO nanorods obtained are carefully studied using X-ray diffractometry,scanning electron microscopy and spectrophotometry.Results indicate that Ag ions enter into the crystal lattice through the substitution of Zn ions.The<002>c-axis-preferred orientation of the ZnO nanorods decreases as RAg/Zn increases.At RAg/Zn >1.0%,ZnO nanorods lose their c-axis-preferred orientation and generate Ag precipitates from the ZnO crystal lattice.The average transmissivity in the visible region first increases and then decreases as R Ag/Zn increases.The absorption edge is first blue shifted and then red shifted.The influence of Ag doping on the average head face,and axial dimensions of the ZnO nanorods may be optimized to improve the average transmissivity at RAg/Zn <1.0%.  相似文献   

19.
The optical and electrical properties of light-emitting field-effect transistor structures with an active layer based on nanocomposite films containing zinc oxide (ZnO) nanoparticles dispersed in the matrix of the soluble conjugated polymer MEH-PPV have been investigated. It has been found that the current-voltage characteristics of the field-effect transistor based on MEH-PPV: ZnO films with a composite component ratio of 2: 1 have an ambipolar character, and the mobilities of electrons and holes in these structures at a temperature of 300 K reach high values up to ~1.2 and ~1.4 cm2/V s, respectively, which are close to the mobilities in fieldeffect transistors based on ZnO films. It has been shown that the ambipolar field-effect transistor based on MEH-PPV: ZnO films emits light at both positive and negative gate bias voltages. The mechanisms of injection, charge carrier transport, and radiative recombination in the studied structures have been discussed.  相似文献   

20.
The zinc oxide (ZnO) nanorods/plates are obtained via hydrothermal method assisted by etched porous Al film on Si substrate. The products consist of nanorods with average diameter of 100 nm and nanoplates with thickness of 200-300 nm, which are uniformly distributed widely and grown perpendicularly to the substrate. The ZnO nanoplates with thickness of 150-300 nm were grown on Si substrate coated with a thin continuous Al film (without etching) in the same aqueous solution. The growth mechanism and room temperature photoluminescence (PL) properties of ZnO nanorods/plates and nanoplates were investigated. It is found that the introduction of the etched Al film plays a key role in the formation of ZnO nanorods/plates. The annealing process is favorable to enhance the UV PL emissions of the ZnO nanorods/plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号